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Abstract

The study of singularities is a branch of mathematics where ideas from different areas, such as
algebra, geometry or topology, come together. In particular, in this work, we intend to study the
local topology around singular points of complex hypersurfaces, following the famous approach
of Milnor’s work [I1]. We will work with complex hypersurfaces defined by the zero set of a given
holomorphic function f: U C C* — C as follows

V(f) ={z€C": f(z) =0}.

We will assume that f(0) = 0 and that f has a critical point at the origin 0, so that the analytic
set f71(0) has a singular point at 0.

To start, we will study in chapter [1] the local conical structure of V(f). Afterwards, in chapter
2l we will prove the famous Milnor’s Fibration Theorem. This theorem states that % defines
a locally trivial fibration in a sufficiently small sphere around the critical point without the set
V(f). We will also give a very useful alternative version of this theorem. This second formulation
will allow us to study the level sets of the function f close to the critical level set given by
V(f) = f71(0), in sufficiently close neighbourhoods of the critical point. In chapter [3| we will
describe the topology of the fibers of the Milnor’s Fibration and the topology of the intersection
of V(f) and the sphere, called the link of the singularity. Finally, in chapter {4 we study the case
of an isolated singularity. We find several stronger versions of the facts that we will have already
proved. Moreover, we will be able to identify the homotopy type of the fibers in that case as the
homotopy type of a bouquet of spheres.






Introduccion

El estudio de las singularidades de conjuntos definidos por los ceros de funciones holomorfas
es un area de las matematicas en la que se unen numerosas herramientas e ideas de diferentes
disciplinas: geometria, topologia o algebra entre otras. El caso de hipersuperficies definidas por
los ceros de una sola funcion, fue estudiado por John Milnor en [IT], trabajo en el que probé el
famoso teorema de fibracion de Milnor. Este constituye uno de los enunciados fundamentales de
la teoria, y seré el resultado en torno al que gire el presente trabajo.

El objetivo de este texto, a grandes rasgos, consiste en estudiar la topologia en entornos su-
ficientemente pequenos de un punto singular de una hipersuperficie compleja. En particular,
consideraremos una funcién analitica f : U — C definida en un abierto U C C" que contiene
al origen, y supondremos que f(0) = 0 y que Vf(0) = 0. Entonces 0 € f~!(0) serd un punto
singular de la hipersuperficie

V(f) = {z € C": f() = 0},

y estudiaremos la topologia en entornos suficientemente proximos a este punto. Veremos que, de
hecho, existe una bola B, := {z € C" : ||z]| < €} tal que 0 es el tnico valor critico de f|g_. De este
modo, los conjuntos f~!(s) N B, serdn conjuntos lisos para s # 0 en un entorno suficientemente
préximo al 0. Con todo esto, de manera mas precisa, el objetivo sera estudiar la topologia de la
fibra singular f~1(0) N B, y de las fibras lisas f~!(s) N B, que hemos mencionado antes. Puesto
que estamos desarrollando un estudio local, se recurre con frecuencia a las nociones de germen de
la hipersuperficie en el origen (V' (f),0) y de germen de la funcién analitica f : (C",0) — (C,0).
Estos conceptos se explican en el anexo.

Para abordar este estudio local, se estructura el trabajo como sigue. En el capitulo[I] comenzamos
estudiando el teorema de la estructura coénica. Este nos informa de que la forma en que la
hipersuperficie se embebe en el ambiente es siempre la misma para entornos suficientemente
pequenios. Ademaés, nos dice que esta hipersuperficie es homeomorfa al cono sobre su intersecciéon
con una esfera de radio suficientemente pequeno. De este modo, se encuentra que tiene el tipo
de homotopia de un punto, ya que el cono es contractible. A partir de este teorema, se define
el concepto de link del germen f : (C™,0) — (C,0), para el cual estudiaremos algunos ejemplos
interesantes, y el de bola y esfera de Milnor.

Posteriormente, en el capitulo[2] se introduce el teorema de la fibracion de Milnor, que hemos co-
mentado antes. Este nos permite encontrar una fibracién localmente trivial de la esfera de Milnor
menos V(f) en la circunferencia. Comenzaremos revisando algunos conceptos importantes para
la compresiéon del teorema. Después, demostraremos la version original del mismo, presentada
por John Milnor en [I1], para luego ver una version alternativa de la misma que se utiliza mucho
en este contexto, y probar la equivalencia entre ambas fibraciones.

En el capitulo 3] estudiamos la topologfa de la fibra de Milnor y del link de la funcién cuyos ceros
definen la hipersuperficie. Para ello, es necesario introducir algunos conceptos fundamentales de



teoria de Morse para funciones reales. Con esta teoria, se prueba que las fibras tienen el tipo de
homotopia de un CW-complejo de dimension n — 1 y que el link resulta (n — 3)-conexo.

Finalmente, en el capitulo[d]se aplican los resultados obtenidos al caso de singularidades aisladas.
Esto supondré anadir a las hipotesis que plantedbamos antes que en un entorno U suficientemente
proximo al origen 0 se tiene la equivalencia Vf(x) =0, z € U < x = 0. En este caso particular,
se pueden reforzar algunos de los resultados obtenidos, y deducir consecuencias interesantes sobre
c6mo se comporta la fibracién de Milnor. Veremos que esta induce una estructura de libro abierto
en la esfera de Milnor, y que las fibras tienen el tipo de homotoia de un bouquet de p esferas
de dimensién n — 1. Para ello, se utilizaran herramientas relacionadas con las morsificaciones
complejas, concepto que se introduce y detalla en el capitulo.

Comentario a la bibliografia utilizada

Para articular el estudio que se acaba de describir, se ha seguido principalmente la referencia
que ya se ha mencionado [I1]], pues esta es una referencia clasica sobre el tema que recoge gran
parte de los resultados y demostraciones que vertebran el trabajo. Ademés, para comprender
los fundamentos del estudio local de la geometria analitica, que se exponen en el apéndice,
se consulto [8] que recoge un estudio pormenorizado de estos asuntos. Para estudiar la teoria
de Morse, que se utiliza de forma importante en el capitulo [3| se consultaron las referencias
[10], [14] y [12]. Finalmente, para el estudio que se desarrolla en el capitulo {4| con respecto al
tipo de homotopia de la fibra de Milnor se ha seguido el punto de vista expuesto en [1]. Esta
es una referencia también clasica sobre el estudio de singularidades, que utiliza herramientas
sobre monodromia que no se tratan en este trabajo. Sin embargo, las ideas expuestas en sus dos
primeros capitulos se pueden aprovechar para las tltimas secciones del capitulo 4] mencionadas.



Capitulo 1

La estructura conica

En este capitulo, estudiaremos la topologia local en torno a un punto de un conjunto analitico
cualquiera embebido en C". Probaremos que a partir de un cierto radio €y > 0 suficientemente
pequeno, el tipo topologico del par dado por la bola de radio € < ¢y centrada en dicho punto
y su interseccién con el conjunto analitico es siempre el mismo. De hecho, veremos que esta
determinado por cémo se incluye en la esfera dada por el borde de la bola la interseccién
del conjunto analitico con dicha esfera. Aqui se demostraran estas cuestiones para el caso de
singularidades aisladas. Sin embargo, este resultado se cumple también para lugares singulares no
aislado, y més en general, para conjuntos analiticos reales. La demostracién para singularidades
no aisladas es méas sutil que la que aqui presentaremos, y hace uso de estratificaciones de Whitney
(ver [3] y [9]), por lo que aqui solo la comentaremos, aunque en capitulos siguientes asumiremos
su validez.

1.1. El teorema de la estructura conica

Sea V' un conjunto analitico en C™, es decir, un conjunto definido como

V= {E eU: fl(z) = Ovvfm(z) = O}

para un cierto abierto U C C™ y con f; para cada i = 1,...,m una funcién holomorfa definida en
U (ver seccion del apéndice para mas informacion sobre este tipo de espacios). Sea p € V
un punto de dicho conjunto. Denotamos la esfera y la bola cerrada de radio ¢ > 0 y centro p por
Sei={z€C:||z—p|l=€ yBc:={2€C": ||z —p| <¢€}.

Teorema 1.1.1. Existe un € > 0 suficientemente pequeno y una familia uniparamétrica de
difeomorfismos {p; : t € (0,€%]} que dependen de forma diferenciable del pardmetro t de manera
que:

= la funcion @ es la identidad,

» cada funcion ¢ lleva el par (Se,Se N V) en (S¢,S¢ N'V), donde S; es la esfera de radio
r2 =t centrada en p.

Este resultado tiene un corolario importante. Antes de enunciarlo, merece la pena recordar la
definicion del cono sobre un espacio topoldgico X . Este viene dado por el espacio cociente definido
por

X % [0,1]
C(X)=——""—
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es decir, el espacio que resulta de colapsar un extremo del espacio X x [0,1] a un punto.

Por ejemplo, el cono sobre S. NV se define como la unioén de los segmentos que unen los puntos
de este espacio con p:

CSenV):={te+(1—-t)p: t€[0,1], x €SNV}

El cono sobre S, se define de manera analoga y coincide con B.. Con estas definiciones se tiene
el siguiente resultado.

Corolario 1.1.1.1. El par (B.,B. N V') es homeomorfo al par dado por (C(S¢),C(Se NV)).

Veamos qué se consigue con este teorema. Una de las formas de estudiar la topologia local de
un punto en un conjunto analitico serfa conocer el tipo topologico del par dado por el conjunto
analitico en un entorno del punto y el ambiente. En particular, en el teorema consideramos
los entornos dados por las bolas de radio e > 0. El tipo topologico del par (B.,B. N V) se
denomina topologia embebida de V', y asi, el teorema[1.1.1|nos indica que la topologia embebida
de V tiene el mismo tipo topolégico que el par (C(S¢),C(Se NV)). Ademas, nos dice que no
depende del € > 0 que consideremos, a partir de uno suficientemente pequeno. El C(S.NV') es un
espacio contractible, por lo que podemos concluir que la hipersuperficie singular V' (f) N B, tiene
topologia trivial: su tipo de homotopia es el del punto. Sin embargo, en el capitulo siguiente,
vamos a encontrar que hipersuperficies proximas a esta, de la forma f~!(s) N B, no tienen una
topologia tan sencilla.

1.2. Algunos resultados previos de transversalidad

Para poder demostrar estos resultados que acabamos de exponer en el caso de singularidades
aisladas necesitamos conocer el siguiente resultado, que tiene importancia por si mismo.

Proposicion 1.2.1. Sea (V,p) un germen de un conjunto analitico con V-.C C", y supongamos
que p € V es un punto liso o singular aislado de dicho conjunto analitico. Entonces, existe un
€0 > 0 suficientemente pequeno de manera que cada esfera de radio € con 0 < € < €y centrada
en p interseca V* =V — Sing(V') transversalmente.

Demostracion. Si llamamos S, a la esfera de radio € > 0 centrada en p, que S, y V* sean
transversales en un punto de su interseccion zg € V* NS, significa que los espacios tangentes a
Se y V* en xg generan todo el espacio ambiente C™.

La esfera S, es una superficie de nivel de la funciéon distancia al cuadrado, que es una funcién
real analitica r : R*® — R dada por:

2
r(z) = llz = pll*,

luego la esfera es una variedad real de dimension 2n — 1. Por su lado, el conjunto analitico
V* es una variedad compleja, con dimensiéon par menor o igual que 2n — 2. Obsérvese que
como p es liso o singular aislado, para un entorno U suficientemente proximo a p se tiene
que UNV* = U N (V —{p}). En particular, para valores de ¢ > 0 suficientemente pequefnios
VNSeCc V™.

Asi, ambos conjuntos no son transversales en xg € V* NS, si son tangentes en dicho punto, es
decir si y solo si Ty V* C Ty, Se. Los vectores v € Ty, S, son aquellos que verifican dy,r(v) = 0,
luego la condicién anterior es equivalente a que se tenga

dao 7|1, v+ =0,
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o lo que es lo mismo: que xy sea un punto critico de ry = r|y«. Con esto, si dicha interseccion
no contiene puntos criticos de ry, se tiene que V* y S, son transversos en los puntos de esta.

Lo que probaremos aqui es que toda funcién analitica real definida sobre una variedad analitica
lisa tiene un conjunto finito de valores criticos. De este modo, tomando b > 0 el valor critico
minimo de 7y (obsérvese que p ¢ V*) tenemos que para € < b la interseccion V* NS, no contiene
puntos criticos de ry. Asi, considerando ¢y > 0 de modo que e% sea menor que b tendremos lo
que buscidbamos.

Para poder demostrar este hecho, supongamos que V' C C" viene definido por los ceros de las
funciones holomorfas {fi, ..., fm}. El conjunto de puntos criticos de una funcién analitica real
g:V* — R es el conjunto de puntos de V* en los que la aplicaciéon diferencial inducida entre
los espacios tangentes no es sobreyectiva.Este se puede caracterizar como sigue (ver lema 2.7 de

[11]).

Lema 1.2.1. El conjunto de puntos criticos de la funcion analitica real g : V* — R viene dado
por la interseccion V* N W, donde W es el conjunto analitico dado por los puntos x € V para
los cuales la matriz formada por la jacobiana junto con una fila con las derivadas parciales de g:

ag/&cl ag/axzn
0f1/0x1 ... Of1/0xap

Ofn)O21 o Of)Dton

tiene rango menor o igual que el mdzimo que alcanza la jacobiana de las funciones {fi, ..., fm}
en V.

Con esto se puede probar que el conjunto de valores criticos de dicha funcién g, es decir el
conjunto g(V* N W), es finito. Ello se debe a que V* N W = W — Sing(V), y esta resta de
conjuntos analiticos puede expresarse como una union finita de variedades analiticas. Para ver
esto, en primer lugar consideramos la sucesion de conjuntos que parte de M; = W — Sing(W),
que es una variedad analitica lisa, y en la que vamos tomando:

My = Sing(W') — Sing(Sing(W)), M3 = Sing(Sing(WW)) — Sing(Sing(Sing(W))),

y asi sucesivamente. Como W O Sing(W) O Sing(Sing(W))... es una sucesiéon anidada descen-
dente, y puesto que el anillo de las funciones que definen estos conjuntos es noetheriano, esta
cadena tiene que estabilizarse tras un ntimero finito de pasos, es decir: M,, = () para todo n € N
a partir de un cierto indice. Asi, se tiene que existe un k£ € N tal que

W =M U..UM,.
Si ahora tomamos M/ = M; N V* se tiene lo que queriamos:
W — Sing(V) = Mj U ... U Mj.

Cada uno de los términos M/ es un conjunto analitico de puntos lisos, luego se puede descomponer
en una cantidad finita de componentes irreducibles que se corresponden con sus componentes
conexas por caminos. Ademas, todos los puntos de cada M/ son puntos criticos de g. Tomando
dos puntos en una misma componente conexa por caminos de M/ y considerando una curva que
los una, todos los puntos de dicha cruva seran puntos criticos de g, luego g serd constante en



la curva. Con esto, vemos que g es constante en cada componente conexa por caminos de M.
Como hay una cantidad finita de estas, y asimismo, una cantidad finita de factores M, se tiene
que en efecto, g tiene un conjunto finito de valores criticos. Con esto se termina de probar el
resultado que buscdbamos. O

1.3. Demostracion del teorema de estructura conica

La demostracion del teorema y de su corolario, en el caso de tener un punto liso o singular
aislado, se haran de forma detallada, puesto que ponen en préactica una forma de proceder
que se utiliza constantemente para probar los resultados bésicos de la teoria que aqui estamos
estudiando.

Demostracion (del teorema m para singularidades aisladas). Sea ey > 0 lo suficientemente
pequeno, de manera que B, NV contenga a lo sumo un punto singular dado por p y tal que S,
interseque transversalmente a V' para todo € < ¢p. Vefamos en la demostracién anterior que esto
implica que cada punto x € V* N B, no es un punto critico de la restriccion de r(z) = ||z — pH2
a V™.

La idea de esta prueba se basa en contruir un campo vectorial diferenciable v(x) en la bola
punteada x € B — {p} que verifique unas ciertas condiciones, para obtener sus curvas integrales,
las cuales nos daran la familia de difeomorfismos en cuestion. Estas condiciones son las siguientes.

1. En primer lugar, queremos que el campo no se anule en ningun punto de B, — {p}. Esto
se hace para asegurar que las curvas integrales no se cortan entre si.

2. Por otro lado, nos interesa que los vectores del campo apunten “hacia fuera” desde p, de
manera que el producto escalar siguiente, de los vectores vistos en R?"?, sea positivo:

2n

(w(@),z —p) = 3 vila) (i — ps) > 0.

=1

3. Por ultimo, queremos que el campo v(z) sea tangente a la variedad V*.
Lo construimos de forma local. Sea y € B, — {p} fijo.

= Siy no pertenece a V', simplemente consideramos v¥(x) = «—p para todo = € U,, donde U,
es un entorno de y que no corta a V. Se puede ver que este campo verifica las propiedades
1 v 2 de manera sencilla.

» Siy € V,y por tanto pertenece a V*, tomamos un sistema de coordenadas local {uy1, ..., ua, }
en un entorno U, de y de modo que V* verifique: u; = ... = ug, = 0. Como y no es un
punto critico de r(x), se debe cumplir que alguna de las siguientes derivadas parciales sea
no nula (las primeras son todas nulas por como hemos tomado las coordenadas):

or(y) or(y)
3UQ,;+1 B 8UQn ’

Supongamos que es 0r/0up(y) # 0, entonces reducimos si es necesario el entorno U, de y
de modo que no se anule dicha derivada en él. En este entorno establecemos:

Ox1(x) 0xon ()
oup, ~ 7 Oup ’

W(z) = i(

tomando el signo + o — en funcién de si dr/duy, es positiva o negativa respectivamente.
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Si tomamos un punto x € Uy, N V™, en el sistema de coordenadas que estamos utilizando
este viene dado por (uy(x), ..., uz,(x)), y si consideramos la curva coordenada asociada a
la coordenada uy, es decir, dejamos fijos los valores u;(z) si i # h y permitimos que up(x)
varie, tenemos que esta curva permanece contenida en V*, pues las primeras 2p coordenadas
se mantienen nulas. De este modo, aseguramos que el vector definido anteriormente sea
tangente a V* en cada punto del entorno que pertenezca a esta variedad. Ademés se
cumple:

0 0x; 9
2<vy(:c),x _p> = Z%g(l’i —pi) = Z (a;) (iaz,) - iaT; >0

%

Con esto, nos aseguramos que se verifican las propiedades 1 y 2 que se han enumerado
anteriormente. La 3 se garantiza por construccién, como vefamos en el comentario que se
ha realizado en el parrafo anterior.

Tomando ahora una particion diferenciable de la unidad {p,} coherente con los entornos que
hemos ido escogiendo, extendemos este campo local a toda la variedad:

(@) =) py(a)o (@),
y este campo de B, — {p} hereda las propiedades que queriamos de la construccion local.

Ahora, tomamos la normalizacién

Consideramos las curvas integrales © = 7(¢) de este tltimo campo, que son las soluciones de la
ecuacion diferencial:

CC% = w(x).

Sabemos que estas soluciones deben existir localmente y son tnicas, es decir, si g € B, — {p}
existe un intervalo («,3) C R que contiene un valor ¢y de modo que ~(¢) esta definida en
dicho intervalo y 7(tg) = zo. Para evitar problemas si 2y pertenece a la frontera de la bola B,
supongamos que el campo se ha construido en una bola algo mayor B, con € > €. Por otro lado,
la normalizacién escogida hace que dichas curvas verifiquen:

d(Td‘;V)(t) = Z (5;) wi(x) = (2(z — p),w(z)) = 1.

i

De modo que, redefiniendo el parametro ¢ si fuera necesario, tras restarle una constante, se tiene
2
r(y(t) = [ (t) —plI” = ¢

Veamos que esta solucién x = (t) puede extenderse al intervalo 0 < t < ¢2. Sabemos que la
solucién al problema diferencial anterior se puede extender a un intervalo maximal o/ <t < 3/,
que por lo que acabamos de comprobar, debe estar contenido en (0, €?). Supongamos que 3’ < €2.
Como para todos los valores de t en o/ <t < @, se tiene que ¥(t) € B,, que es un compacto,
se alcanza un punto limite 2’ de ¥(¢) cuando t tiende a ', de modo que: r(z’) = 8’ # 0 luego
2’ € B, — {p}, y w(z), por como lo hemos definido, también es un campo vectorial diferenciable
en torno a este 2. Asi, para cada z” en un entorno de z’ y cada ¢’ en un intervalo suficientemente
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pequenio I que contenga a 3 también se cumple que existe una tnica soluciéon al problema de
valor inicial dz/dt = w(zx), a la que llamamos ¢(¢), con condicion inicial ¢(t") = 2" y t € I. Si
tomamos t” € (¢/, /) N1, la unicidad de la solucion de estos problemas nos dice que ~(t) = ¢(t)
para t € (o/,8") NI, luego concatenando ambas soluciones podemos extender la solucion v(t)
a un intervalo mayor que el que habfamos tomado como maximal dado por (o/,3) U1, lo cual
lleva a contradiccion. Por tanto ' > €2. Analogamente se puede probar o/ = 0.

Finalmente, notemos que la solucién ~(t) con 0 < t < €2 viene determinada por el valor inicial:

’)/(62) € S..

Asi, si restringimos el flujo asociado al campo w(z) a la esfera S, es decir, consideramos la
aplicacion diferenciable ¢ : S, x (0, €2] — B, — {p}, tenemos para cada t € (0, €?] el difeomorfismo
Yt + S = Sy entre las esferas que nos daba el enunciado, que ademas depende diferenciablemente
del parametro. Ademas, como hemos tomado el campo w(z) tangente a V*, las curvas integrales
que pasen por un punto de V* deben quedar totalmente contenidas en esta variedad. Con esto
se tiene que la restriccion de ¢ a (V N'S.) x (0,€?] lleva difeomorficamente este espacio en

VN (B —{p})

Finalmente, para probar el corolario basta con ver que como para cada a € S se tiene que ¢¢(a)
tiende a p conforme ¢ tiende a 0, la siguiente correspondencia

at + (1 —t)p — @ue2(a)  t€(0,1]

se puede extender a un homeoformismo entre el C(S¢) y B.. Este homeomorfismo lleva, tomando
restricciones, C(Se N V) en B.NV. O

Vista la prueba del teorema [I.1.1] para singularidades aisladas, se pueden realizar dos obser-
vaciones importantes en relaciéon a la misma. En primer lugar, merece la pena senalar que no
se han precisado argumentos relativos a la holomorfia de las funciones, sino simplemente a su
diferenciabilidad, luego este resultado es aplicable perfectamente a conjuntos analiticos reales.
De hecho, es incluso valido para conjuntos semialgebraicos, es decir, definidos por igualdades y
desigualdades de funciones reales, pero ver esto segundo no es directo.

Por otro lado, como ya se ha comentado, el resultado también es cierto aunque no tengamos una
singularidad aislada en p. La demostracion del resultado falla en este caso a la hora de definir el
campo v(z) tangente a V en B, — {p}. No tiene sentido hablar de espacio tangente en un punto
singular, y al haber puntos singulares arbitrariamente préximos a p, no podremos definir este
campo como necesitamos para la prueba. Como ya se ha comentado, la forma de arreglar esta
cuestion pasa por utilizar estratificaciones de Whitney. Ademaés, es interesante notar que si la
singularidad de V' no es aislada, en Link(V') no seré liso y perdemos las propiedades de trans-
versalidad que hemos estudiado. Esta caracteristica se traslada al cono, en el que encontramos
que se cumple:

Sing(C(Link(V))) = C/(Sing(Link(V))).

Un ejemplo trivial de esta situacién en que el lugar singular no es aislado puede observarse en
la hipersuperficie dada por los ceros de f(z,y,2) = 22 — y> en C3. En este caso tenemos que
Sing(V) = {(z,y,2) € C3: £ =0, y = 0}, mientras que z es arbitrario.

1.4. El link de una singularidad y algtn ejemplo

Con los resultados que acabamos de probar, se definen los siguientes conceptos.
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Definicion 1.4.1. El espacio S¢ NV se denomina link de V' en p, y se denota por Link(V,p).
Si estamos en la situacién en que V' es una hipersuperficie definida por los ceros de una funciéon
holomorfa f, se puede denotar al link por Link(f, p). En caso de que se sobreentienda cuél es el
punto p, se denota simplemente por Link(V') o Link(f).

Obsérvese que si S, y V son variedades lisas y transversas en cada ¢ € Link(V,p), se tiene
que Link(V,p) es una variedad lisa con dimension dim(V) — 1. Ademés es compacta por ser la
interseccién de dos cerrados y ser un conjunto acotado.

Definicion 1.4.2. El ¢y > 0 en que se realiza el Teorema y cualquier otro ¢ > 0 mas
pequeiio, se denomina radio de Milnor para V. Asimismo, la esfera S, y la bola B, asociadas a
dicho radio y centradas en la singularidad se denominan esfera y bola de Milnor, respectivamente.

Veamos algunos ejemplos interesantes de links en situaciones concretas.

» El primero que nos puede venir a la mente es el caso de un punto liso. Sea (V, zg) el germen
de un conjunto analitico con xg € V un punto liso, con lo que V' C C" es una variedad
en un entorno de este punto y supongamos dimV = m. En esta situacién, tenemos que
el Link(V') en z¢ se corresponde con una esfera usual de dimensiéon m contenida S. Para
demostrarlo se aplica el Lema de Morse (lema , que se expondra en el capitulo |3 en
detalle. La funcion real diferenciable dada por la restriccion ry : V- — R de la funcién
distancia al cuadrado r(z) = || — 20|® a V, tiene un punto critico no degenerado en .
Esto se deduce de que xg es punto critico de 7:

Vr(z) =2(x — z9) =0 < x = xp,

luego xg también debe ser punto critico de la restriccion ry. Ademés, la matriz hessiana de
r en dicho punto es Hess(zg) = 2l,. La hessiana de ry se obtiene tomando la restriccion
de dicha hessiana de r al tangente a V en zy. Con esto, obtenemos una matriz también
proporcional a la identidad, luego no degenerada y definida positiva, pero esta de orden
m, la dimensién de V. Como acabamos de ver que x( es un punto critico no degenerado de
ry de indice 0, aplicando el lema de Morse podemos concluir que existe un sistema,
local de coordenadas {uq, ..., u,;,} en un entorno de xy en V* tal que

rv(z) = ud + ... u,.

Con esto se deduce que el Link(V,zo) = V(f) N771(e?) es difeomorfo a la esfera definida

por u% + ...+ u%n =é2

= Otro caso interesante es el curvas planas. Si tomamos una funciéon holomorfa f : C? — C,
se tiene que V (f) := {(z,y) € C?: f(x,y) = 0} es una curva compleja en C2. En este caso,
la esfera de Milnor tiene dimension real 3, mientras que el Link(f, p) en torno a un punto
cualquiera p € V(f) tiene dimension real 2 — 1 = 1 y es una variedad compacta. De este
modo, encontramos que si el link es conexo, lo que se da cuando f es irreducible pues V(f)
tendra una tnica componente irreducible (ver dltima seccion del apéndice), entonces es un
nudo, es decir homeomorfo a una circunferencia S' embebida en S3, lo que puede dar lugar
a que esta se anude sobre si misma. Si el link tiene més de una componente conexa, sera
homeomorfo a un enlace, que no es mas que un conjunto de circunferencias posiblemente
anudadas entre si embebidas en S3. Si se estudian curvas complejas en C™ con m > 2, los
nudos podrian siempre desanudarse, con lo que su topologia embebida seria la misma que
la de una curva lisa en C™. Veamos algunos casos concretos de esta situacién con m = 2.

e Si consideramos f(z,y) = xy, se puede observar que 0 es un punto singular de V. El
Link(f) en torno a 0 es el enlace de Hopf, dado por dos S! anudados entre si. Esto

9



se puede ver de la forma siguiente. El conjunto V(f) viene dado por la union de los
dos planos coordenados de C2:

V(f)={(z,y) €C?*:x=0}U{(z,y) € C?:y =0}.

Si consideramos la interseccion de cada uno de estos planos con la bola de Milnor,
obtenemos que dicha intersecciéon es un disco contenido en un plano coordenado.
Ambos discos tienen intersecciéon no vacia, pues 0 esté en los dos, y de hecho este
el tinico punto que pertenece a dicha interseccién. Usando esto se puede ver que las
fronteras de estos discos, que nos dan el Link(f), son dos S! anudados en S3.

Por otro lado, si tomamos f(x,y) = 2P — y?, donde p y ¢ son dos enteros coprimos
mayores o iguales que 2, observamos que V'(f) tiene una singularidad en 0. El Link(f)
de esta curva en torno al origen es un nudo toroidal de tipo (p,q) en S3, es decir,
un S' que se anuda p veces alrededor de uno de los S' que definen el toro, y ¢ veces
alrededor del otro S!. Para obtener este resultado se procede como sigue. El Link(f)
en torno al origen en este caso viene dado por:

Link(f) = {(z,y) € C?: a? —y7 = 0} N {(x,y) € C? : |z]* + |y|* = €}.

Supongamos (z,y) € Link(f). La primera condicion, conlleva que |z|P = |y|?. Sus-
tituyendo la expresion para |y| que se obtiene en la definicion de S, tenemos que
z|* + ]:n|2p/q = ¢2. Esto tltimo implica que el médulo de z es igual a una constante:
|z| = . Por la relacion entre los modulos de x e y, se puede decir lo mismo de esta
segunda componente: |y| = 7. Con todo, podemos expresar los complejos z e y de la
siguiente manera:
r=¢? y=ne”,

con 6, 0" € [0,27). Esto nos permite en primer lugar, ver que (x,y) € Sé X S,17, es
decir, que en efecto dicho punto esté contenido en un toro. Para ver que Link(f) es
el nudo que hemos descrito, sustituimos las expresiones para x e y en

. - N/
P — yl = gpezp9 _ 77qezq@ = 0.

Por la relaciéon entre los médulos, podemos cancelar los términos &P y n9, v quedarnos
con una relacién para las exponenciales. Haciendo un desarrollo de Taylor, a primer
orden nos queda que los argumentos de = e y deben verificar:

o ="Lo.
q

De este modo, dado un x € Sg tal que (z,y) € Link(f), tenemos identificado el y
que le corresponde en Link(f). Ademas, por la relacion entre los angulos, si partimos
de un mismo angulo inicial para = e y y los vamos haciendo recorrer sus respectivas
circunferencias, cuando 6 da ¢ vueltas a su circunferencia S}, # habra recorrido p

vueltas a S}], y puesto que p y ¢ son coprimos, esta es la primera vez que volvemos al
punto de partida. Asi vemos que se obtiene el nudo que describiamos.
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Capitulo 2

La Fibracion de Milnor

A partir de ahora, nos centraremos en el caso de hipersuperficies, esto es, conjuntos V (f) :=
{r € U: f(x) =0} con f una funcion holomorfa definida en un abierto U de C". Por simplicidad
en las expresiones, asumiremos que esta funcion lleva f(0) = 0. En este capitulo veremos que si
f tiene un punto critico en el origen y si € > 0 es un radio de Milnor del germen del conjunto
analitico (V' (f),0), entonces, la funciéon argumento:

iy
1

es localmente trivial, es decir, S — Link(f,0) esté fibrado sobre S*.

Se — Link(f,0) — S*

En primer lugar, definiremos las hipétesis de las situaciones con las que trabajaremos de aqui
en adelante. A continuacién daremos un teorema de gran importancia en este contexto y proba-
remos que los valores criticos de f en un entorno del punto critico son aislados. Posteriormente
estudiaremos y probraremos el resultado que acabamos de mencionar. Finalmente se probaré
una version alternativa de este resultado que es muy comtun en este campo y resulta de gran
utilidad.

2.1. Singularidades de hipersuperficies

Como hemos anunciado, en este y los siguientes capitulos trabajaremos con gérmenes de hiper-
superficies. Una exposicién més extensa sobre la teoria de conjuntos analiticos y gérmenes de
estos conjuntos analiticos se puede consultar en las secciones y del apéndice. Para el
estudio que aqui vamos a realizar, basta con la siguiente nocion.

Definicién 2.1.1. Una hipersuperficie compleja embebida en C" es un conjunto V- C C" de
dicho espacio que localmente se puede definir como los ceros de una cierta funcién holomorfa.

Como aqui centraremos el estudio en un punto concreto p € V' de dicha hipersuperficie, podemos
dar una funcién f : U — C con U un entorno abierto de p en C" de manera que

V=V(f):={zeC": f(z) =0}

Por simplificar las expresiones consideraremos p = 0 y que la funcion f lleva f(0) = 0. Con estas
hipotesis definimos las dos situaciones fundamentales con las que trabajaremos en este texto.

Definicién 2.1.2. Diremos que la hipersuperficie V'(f) es singular en 0 si la funcién holomorfa
f:U — C con U un entorno abierto en C" del origen tiene un punto critico en 0, es decir, si su
gradiente cumple V f(0) = 0.
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Definicion 2.1.3. Diremos que la hipersuperficie V'(f) es singular con una singularidad aislada
en 0 si f tiene un punto critico aislado en 0.

2.2. Lema de Selecciéon de la Curva y consecuencia sobre los va-
lores criticos

Para poder probar el Teorema de Fibraciéon de Milnor, necesitaremos hacer uso de un resultado
importante en este contexto conocido como el Lema de Seleccion de la Curva o Lema de Seleccion
de Curvas.

Lema 2.2.1 (De seleccion de la curva). Sea U C R™ un conjunto abierto definido por:
U={zeR":g(x)>0,..,9-(x) >0},

donde g; coni =1, ...,7 son funciones analiticas. Sea por otro lado V un conjunto analitico dado
por los ceros de un conjunto finito de funciones analiticas. Si 0 € U NV entonces existe una
curva real analitica v : [0,€) — R™ con v(0) =0 y tal que v(t) e UNV para t > 0.

La prueba de este resultado puede encontrarse en el capitulo 3 de [11]. Este lema tiene una
consecuencia importante aplicado en el contexto que estamos estudiando.

Proposicion 2.2.1. Sea f : U — C una funcion holomorfa definida en un abierto U C C"
con un punto critico en 0 € C" y tal que f(0) = 0. Entonces existe un € > 0 suficientemente
pequeno tal que 0 es el unico valor critico de f|p,. En otras palabras, los valores criticos de f
son aislados.

Demostracion. Supongamos lo contrario. Entonces, existe una sucesion {z,,} de puntos criticos
de f que tiende al origen: x,, — 0 cuando n — oo, cuyos valores criticos f(z,) son todos distintos
de 0. En particular, esto significa que 0 es un punto de acumulacién del conjunto de puntos
criticos z € ¥y tales que f(z) # 0. Puesto que ¥ es un conjunto analitico, si quitamos f~1(0)
de este conjunto, por ejemplo, tomando:

L= 0 =S n{z eC: | f@)|* >0},

tenemos que este es un conjunto en las condiciones de Lema de Seleccion de la Curva. Asi,
podemos tomar una curva y(t) con ¢t € [0, €) de modo que v(0) = 0 y tal que y(t) € Xy — f1(0)
para t > 0, luego en particular, f oy(t) # 0 si t > 0. Sin embargo, al ser cada ~(¢) un punto
critico de f, se tiene que

d(fo)(t)
————- =0, Vte (0,¢).
dt ’ (0,¢)
Asi, la funcién f es constante sobre la curva, y por continuidad, puesto que f ( (0)) = f(0) =0,
debe ser constantemente nula en la curva, en contradiccion con que y(t) € Sy — f~1(0). Por
tanto el enunciado debe ser cierto. O

2.3. Fibraciones triviales y localmente triviales

Visto esto, pasemos a estudiar qué son las fibraciones triviales, pues este serd un concepto
fundamental en lo que sigue.

Definicion 2.3.1. Sean X e Y variedades diferenciables, donde X podria tener borde, pero Y
no. Sea ¢ : X — Y una aplicacion diferenciable sobreyectiva. Decimos que ¢ es una fibracion
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diferenciable trivial si existe otra variedad diferenciable F', con borde si X lo tiene, y un difeo-
morfismo ¢ : X — Y x F de modo que ¢ = 7y 0, con 71 la proyeccion sobre el primer espacio.
Es decir, tal que el siguiente esquema resulta conmutativo.

X 23V xF

| A

Si consideramos para cada y € Y la fibra ¢~!(y) encontramos que ¢~'(y) = ¢ ' ({y} x F), y en
particular tenemos que es difeomorfa a la variedad F'.

Definicién 2.3.2. En las hipétesis anteriores, decimos que ¢ es una fibracion diferenciable
localmente trivial si para cada p € Y existe un entorno abierto p € U, C Y de manera que la
restriccion:

Dlo-1w,y 1 07 (Up) = Uy

es una fibracion diferenciable trivial.

Asi, si ¢ es localmente trivial, el espacio X tiene en cada punto la estructura local de un espacio
producto donde uno de los términos es precisamente un entorno abierto de Y y otro la fibra
#~1(y). Si Y es conexo, en particular, las fibras ¢~!(y) para cada y € Y son difeomorfas entre
si.

En general, una fibraciéon localmente trivial no tiene por qué ser trivial. El caso mas claro de
esta circunstancia es el de la banda de Mobius. En ella, se tiene una fibracién localmente trivial
sobre la circunferencia se que encuentra en su centro. Esto se debe a que localmente la banda se
obtiene considerando fibras dadas por segmentos rectos pegados a esta circunferencia de manera
ortogonal. Asi se tiene la estructura local de producto que acabamos de describir. Sin embargo,
de manera global esto no se verifica, pues la estructura que se obtiene asi es el cilindro. Este
espacio es distinto de la banda de Mdbius por ser orientable.

Al margen de esto, si existe un caso concreto para el cual ambos conceptos se hacen equivalentes:
una fibracion localmente trivial sobre un espacio contractible es una fibracion trivial.

Finalmente, incluimos un resultado debido a Ehresmann [4] que nos sera tutil en el futuro y nos
permite identificar cudndo una aplicacién es localmente trivial.

Teorema 2.3.1. Sean M y N dos variedades diferenciables, que en principio supondremos sin
borde. Supongamos que f: M — N es una aplicacion diferenciable sobreyectiva propia (es decir
bajo la cual las preimdgenes de compactos de N son compactos en M) y que es submersion (su
diferencial en cada punto de M es sobreyectiva). Entonces f es localmente trivial.

Si ademds M tiene borde, esto es OM # 0, y floam es una submersidn, entonces también podemos
concluir que f es localmente trivial.

2.4. FEl teorema de la Fibracion de Milnor

Antes de enunciar y demostrar el resultado que da nombre a la seccién, conviene fijar una serie
de notaciones. En primer lugar, a partir de ahora consideramos el producto interno hermitico y
sesquilineal de C" definido para cada par de vectores u,v € C" por:

n
(u, vy := Zuzvﬁ
1=1
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Por otro lado, dada una funciéon f : C* — C holomorfa, definimos el gradiente complejo tomando
las conjugadas de las derivadas parciales complejas:

s (D))

Esta definicion se toma asi para que la regla de la cadena aplicada a la funcién f a lo largo de
un camino y(t) tome la forma a la que estamos acostumbrados con el producto anterior:

d(f o)) _ of dvi _
dt ZazZ at (', V).

En particular, si el camino «(¢) cumple que Y(tg) = 20 y 7/ (tg) = v, tenemos que la derivada
direccional de f en zg en la direccion de v € C™ es lo que esperamos:

d(f o~)(to)

= (7 (t0), VE £ (20)) = (v, VE(0)-

Por tltimo, podemos recuperar una estructura de espacio vectorial euclideo real sobre R2?".

Basta con considerar las componentes real e imaginaria de cada coordenada: u; = a; + ib; y
— N 2n .

vj = aj + b}, y tomar el producto escalar para u,v € R*" dado por:

n

R{u,v) =Y (ajaj + b;d)),

J=1

que, como vemos, coindice con el producto euclideo usual. Asi, la propiedad de hermiticidad se
traduce en simetria:
R{u,v) = R{v,u) = R{v, u),

mientras que la sesquilinealidad simplemente en bilinealidad.

Esto permite, por ejemplo, caracterizar el espacio tangente una esfera S centrada en 0 en un
punto p € S de la forma siguiente:

T,S={veC": R{v,p) =0}
Esto se debe a que la esfera es una variedad real, pues es la superficie de nivel de la funcién
distancia, que es una funcién real.

Con esto claro, sea (V(f),0) el germen de una hipersuperficie definida por los ceros de una
funcion holomorfa f : U — C, con U un entorno abierto del 0 en C", que verifica f(0) = 0.

Teorema 2.4.1 (Teorema de fibracion de Milnor). En las hipdtesis anteriores se tiene que
existe un €9 > 0 tal que para cada 0 < € < € la funcion argumento dada por

¢: Sc—Link(f,0) — S!
z — #(2) =

f(2)
£ (=)

donde S* es la circunferencia, es una fibracion diferenciable localmente trivial. La fibra de ¢ se
denotard por Fy := ¢~ ().

La demostraciéon de este resultado tiene dos partes diferentes.
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= En primer lugar, se debe probar que para ¢ > 0 suficientemente pequefio ¢ no tiene
puntos criticos sobre S, — Link(f, 0), para que asi las fibras Fy = ¢~ (¢*?) sean variedades
diferenciables de S..

= Una vez hecho esto, se construye un campo vectorial apropiado que nos permita ver la
estructura topologica local de producto.

Para ello, es muy tutil observar que la funcién argumento se puede expresar como una determi-
nacion continua del argumento de f, es decir, mediante una funcion 6 : S¢ — Link(f,0) — R
diferenciable tal que:

f2) _ o)

@

Dado p € S, — Link(f, 0), se tiene que las diferenciales de ambas funciones se relacionan por:

()

dyp(z) = i) d,0(2).

Puesto que la exponencial es siempre no nula, esto conlleva que los puntos criticos de ambas
funciones son los mismos, y ademas, por su expresion sabemos que las fibras de 6(z) y ¢(z)
coinciden.

De este modo, en la primera parte de la demostraciéon que hemos comentado antes, podemos
centrarnos en buscar los puntos criticos de #(z). Veamos que su derivada direccional se puede
caracterizar de modo sencillo. Si consideramos el valor principal del logaritmo complejo, al que
denotamos por Log para distinguirlo del logaritmo real, se cumple que Log f(z) = log|f(z)| +
i6(z). Teniendo en cuenta que 6(z) es una funcion real, esta se puede expresar de la siguiente
manera

0(z) = R(—iLog f(z) +ilog|f(2)]) = R (—iLog f(z)) .

Con esto, si tomamos un camino y(t) tal que v(tg) = 20 v 7'(to) = v, podemos expresar la
derivada de 6(z) en zg en la direccién de v como:

dwa;w(to) =R (d(_iLZW(to)) =R (v (to), VE(—=iLog f(20))) = R (v,i VE Log f(z0)).

A partir de todo esto se deduce el siguiente lema.

Lema 2.4.1. Los puntos criticos de la funcion ¢(z) restringida a S, — Link(f,0) son aquellos
20 € Se — Link(f,0) tales que iV Log f(z0) es un mailtiplo real de zy. Ademds, en caso de que
zp no sea un punto critico de dicha restriccion, el espacio tangente a la fibra de ¢ en zy es el
espacio ortogonal euclideo a iVC Log f(z0) en TyySe.

Demostracién. En efecto, si iVC Log f(z9) = Azp con A € R se tiene que la derivada anterior
se anula para cada v € T,,Se, por lo que zy es un punto critico de 6(z) y por tanto de ¢(z).

Ademaés, aunque no sea un punto critico de ¢(z) restringida a S, — Link(f,0), si consideramos
una curva 7(t) tal que y(tg) = zo y totalmente contenida en la fibra de ¢(z) que contiene a =z,
entonces se tiene que o~ es constante. De este modo, también se anula la derivada anterior. De
ahi deducimos que el espacio tangente a la fibra de ¢(z) en zg, dado por los vectores v = +/(tg),
es el complemento ortogonal euclideo al vector iV Log f(z0). O

Con esto, para demostrar la primera parte del resultado basta con ver que a partir de un cierto
radio de Milnor se cumple que para cada zy € S, — Link(f, 0) los vectores iV Log f(z0) y 2o son
linealmente independientes sobre los reales. De hecho, se puede probar un resultado més preciso
sobre la relacién entre ambos.
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Lema 2.4.2. Eziste un valor g > 0 tal que para todo z € C" —V con |z| < €, los vectores z y
i VCLog f(2) o bien son linealmente independientes sobre los niimeros complejos, o bien:

VC Log f(2) = Az,

donde A es un nimero complejo no nulo cuyo argumento, considerado en (—m, 7], tiene valor
absoluto menor que /4.

Este resultado, en particular, prueba lo que nos interesa, pues el complejo A cumple que R(A) > 0,
luego no puede ser imaginario puro, y asi no se puede cumplir la condicién para que z sea punto
critico de ¢(z).

Para probar el lema se hace uso del Lema de Seleccion de la Curva. Esta demostraciéon se
omite en este trabajo por brevedad y se puede consultar en el capitulo 4 de [11].

Sin embargo, s{ entramos con detalle en la segunda parte de la demostraciéon del teorema [2.4.1
En ella, se aplican técnicas semejantes a las que utilizibamos en el capitulo anterior. En este
caso, buscamos construir un campo v(z) en z € S, — Link(f,0) que verifique las siguientes
propiedades:

1. ser no nulo en cada punto de S¢ — Link(f,0),
2. ser tangente a S, esto es, verificar R(v(z),z) = 0 para cada z € S, — Link(f,0),

3. y finalmente, ser transversal a las fibras. Para conseguir esto se impone que cumpla para
cada z € S, — Link(f,0):
R(v(2),iVC Log f(z)) # 0.

Ello nos permite normalizar el campo v(z) de la forma siguiente

v(z)
R{v(2),iVC Log f(2))

w(z) =

Este altimo campo w(z) cumple que, si z = y(t) es una curva integral suya,

d(f o)

o (t) =R (w(z),i V€ Log f(2)) = 1.

Asi, el campo w(z) sera un levantamiento del campo unitario sobre la circunferencia S' C
C. Podremos asegurar la primera condicién gracias a que a partir de cierto radio de Milnor
tenemos que 6(z), y ¢(z), tienen ambas diferencial sobreyectiva.

Construimos este campo localmente. Dado zy € S, — Link(f,0) tenemos las dos opciones siguien-
tes.

= Por un lado, es posible que zy y V€ Log f(z) sean linealmente independientes sobre el
cuerpo de los complejos. Esta es una condicién abierta, pues es equivalente a que la matriz
dada por las componentes de zy y V€ Log f(2) tenga algtin menor de orden 2 no nulo.
Asi, podremos garantizar que se cumple en un entorno abierto U, de zp. En cada punto
z* € Uy, se define el sistema de ecuaciones lineales:

(v*,2") =0,
<v*,z’VC Log f(z")) =1,

para un v* € C" cualquiera. Como el rango de la matriz de coeficientes del sistema es
méaximo (por la independencia lineal de 2* y iV Log f(2*) en cada punto z* de U.,,), este
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sistema tiene solucion v* € C”, que nos permite definir el campo v,,(z*) = v* en Uy, con
las propiedades que enumerédbamos antes.

En efecto, v* # 0 por la segunda ecuacion del sistema. Ademaés, este vector v* es tangente
a S en z* pues por la primera ecuacion: R(v*, z*) = 0, y esta es la condiciéon que veia-
mos que caracterizaba al espacio tangente a la esfera. Por otro ultimo, también verifica
R(v*,iVC Log f(2*)) = 1 # 0 por construccion.

= La otra posibilidad seria que V€ Log f(z) = Az con A € C, donde, por el lema 2l el
argumento de A serd menor estricto que /4 en valor absoluto. De nuevo, la COIldlClOIl

arg(VC Log f(20), z0)| <

|

es una condicién abierta, luego podemos garantizar que se cumple para todo z* en un
entorno abierto U, de zy. Si para cada z* € U,, establecemos v,,(z*) = iz*, este campo
local verifica que

R(iz*, z") =0,

y que
arg(iz*,iVC Log f(z ) = ‘arg( ,VC Log f(2"))

N

Por la definiciéon que hemos tomado, como z* € S, el campo no se anula en ningin
punto de U,,. La primera ecuacion nos permite concluir que se trata de un campo tan-
gente a la esfera. Finalmente, la propiedad sobre el argumento nos permite concluir que
R(v(2*),iVC Log f(2*)) > 0, y en particular es distinta de 0, en cada punto del entorno
2* € Uy.

En cualquiera de los casos hemos podido construir un campo tangente diferenciable en un en-
torno U, de 29, dado por v, (2), que verifica las propiedades que nos interesaban. Usando
una particion diferenciable de la unidad {y,,} subordinada a los entornos {U.,,}, obtenemos un
campo diferenciable global v(z) definido para todo z € S¢ — Link(f,0) como:

Z ﬂzo Uzo

Por construccion, esta campo v(z) hereda las propiedades que nos intersaban del local. En efecto,

debe verificar
= 1z (2) Rvzy(2),2) =0

y puesto que p,, > 0 para cada zp € S, — Link(f,0)

R(v(2),iVELog f(2)) = D p1z(2) R(vz(2),iVE Log f(2)) > 0

Asi, tenemos que v(z) es no nulo por la segunda ecuacion, tangente a la esfera por la primera,
y verifica que el producto R{v(z),iVC Log f(2)) # 0.

Gracias a esta ultima propiedad, tomamos la normalizacién que anunciadbamos:

v(z)
R{v(2),iVEC Log f(2))"

Este campo w(z), como ya hemos comentado, cumple

w(z) =

R(w(z),iV" Log f(2)) = 1,
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y ademas, que (w(z),iV® Log f(z)) tiene argumento menor en valor absoluto que 7/4. Esto
altimo también se hereda de la definicién local, que verifica esta condiciéon, pues al sumar nameros
complejos con esta propiedad obtenemos un resultado que también pertenece a este cuadrante.

El flujo asociado al campo w(z) seré el que nos de el difeomorfismo que necesitamos para probar
ue ¢ es localmente trivial. Recordemos que queremos ver que existe un Uy entorno abierto en
0
la circunferencia de un determinado €? tal que el siguiente diagrama es conmutativo

Se — Link(f,0) ) T (Uy) 2 Up x Fy
¢l /
™1
St D) Uy

y donde ademés la aplicaciéon yy es un difeomorfismo.

Lo primero que vamos a comprobar es que el flujo que nos dan las érbitas del campo es completo,
esto es, dichas curvas integrales estan definidas en todo R. Sabemos que estas deben existir
localmente para un cierto intervalo maximal I C R. Lo que queremos probar es que de hecho
I = R. Esto lo tendriamos asegurado en caso de estar trabajando en una variedad diferenciable
compacta, pero S, — Link(f,0) no lo es. Tenemos que ver que una curva integral v(¢) cualquiera
no tiende a V NS, para un valor finito del parametro de la curva tg € R, lo que “cortaria” su
intervalo de definicién. Si esto sucediera deberiamos tener:

lim f(7(t)) = 0= lim R(Log f(7(1))) = lim log | f(v(#))| = —o0.

Sto t—to

t—to
Sin embargo, encontramos que la derivada:

dR(Log f o)

= = R(Y(t), V* Log f) = R(w(y(t)), V® Log f) = =T(w((t)),iV" Log f)

que en particular tiene valor absoluto menor que 1, pues el argumento de dicho producto hermi-
tico era menor que 7/4. Asi el crecimiento de la funcién esta controlado y no puede dispararse
a infinito para un valor finito tg. Esto concluye que el flujo es completo.

Por otro lado recordemos que sobre las curvas integrales (¢) del campo w(z) se tiene

d(f o)

() =R (w(2),i Ve Log f(2)) = 1.

Asi O(y(t)) =t + 6y con by el angulo al que va a parar el valor inicial de la curva v(0) = zg via
¢. Visto de otro modo: el camino 7(t) es tranversal a las fibras de manera que su imagen via
¢ recorre la circunferencia con velocidad unitaria. Esto sumado a que t recorre todos los reales
nos permite ver que ¢ es sobreyectiva.

En definitiva, hemos encontrado un flujo completo sobre S, — Link(f,0) y sabemos como se
comporta nuestra aplicacién ¢, que es sobreyectiva y diferenciable, sobre las 6rbitas del flujo.
Para cada t € R tenemos un difeomorfismo ¢; : S — Link(f,0) — S, — Link(f,0) que lleva la
fibra Fy = qb_l(ew) en la fibra Fyi,, v este difeomorfismo depende de forma diferenciable del
parametro t. De este modo, dado un entorno Uy de e en S suficientemente pequeiio, hemos
conseguido encontrar el difeomorfismo:

Upgx Fp — ¢ 1(Up)
(0, 2) = pi(2)

Con lo que en efecto podemos afirmar que ¢ es una fibracion diferenciable localmente trivial. [0
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2.5. Fibracion de Milnor en el tubo

En la literatura encontramos cominmente dos fibraciones localmente triviales a las que se deno-
mina Fibraciéon de Milnor. La que acabamos de desarrollar es la que introdujo el propio Milnor
en [II]. En esta secciéon veremos la otra fibracion que existe. Consideremos una hipersuperficie
singular en el origen.

Teorema 2.5.1 (Fibraciéon de Milnor en el tubo). Sea B, una bola de Milnor (ver definicion
. Entonces existe un dg > 0 tal que para cada 6 < &g, si Dg es el disco cerrado en C de
radio § > 0 y centro en 0 € C y ODs = S es su borde, entonces:

Y= flr-16mp)ne. : fH(OD5) N B — 0D
es una fibracion diferencial localmente trivial.

Para poder comprobar que esta funcion es localmente trivial, necesitamos ver primero el siguiente
resultado. Denotemos D} := D5 — {0}.

Lema 2.5.1. Dado € > 0 un radio de Milnor, existe un § > 0 suficientemente pequeno tal que
para cada t € C con 0 < [t| < § la fibra f~1(t) interseca transversalmente a S..

Para el caso en que se tiene una singularidad aislada en el origen, la demostracion es sencilla.
En este caso, sabemos que existe un € > 0 suficientemente pequetio tal que (V(f) N B.) — {0}
es un conjunto liso. Por otro lado, también hemos comprobado en el lema que el 0 era un
valor critico aislado de f, luego existe un 6 > 0 suficientemente pequernio tal que todas las fibras
f71(t) N B¢ con t € D} son lisas. Juntando ambas hipotesis, se tiene que (f~(D;s) NB.) — {0}
es un conjunto liso. Esto nos permite repetir los argumentos que utilizamos en la proposicion
m para ver que las fibras f~1(¢) con t € D§ son transversales a S, a partir de un cierto radio.
En efecto, la funcién distancia al cuadrado, que es una funcién analitica real, tendra sobre el
conjunto liso (f~(Ds) N B:) — {0} un conjunto finito de valores criticos, luego redefiniendo el
radio € > 0 para que sea menor al minimo de entre estos, tenemos que el conjunto de las esferas
con radio menor que € intersecan transversalmente a las fibras f~1(t) con t € D}.

No obstante, el resultado se verifica en general. Si la singularidad no es aislada, como ya hemos
dicho anteriormente, no tenemos un Link(f,0) liso, por lo que fallan los argumentos anteriores.
Para probar el resultado en estas circunstancias se hace uso de argumentos relacionados con
estratificaciones de nuevo, y aqui lo omitiremos.

Demostracion (del teorema [2.5.1). Veamos que la funcién de teorema es localmente
trivial utilizando el teorema de Ehresmann Consideramos € > 0y § > 0 verificando el
lema anterior. Llamamos E a f~1(0Ds) NB., de modo que 0E = f~1(dD;) NS, y asi, la funcion
del enunciado es

Veamos primero que 1 es una submersion en el interior de E y restringida a su frontera.

» Dado z € E — OF, como hemos visto que las fibras f~!(t) N B, con t € D5 son lisas,
en particular las que provienen de ¢t € 0Dg también lo son. De este modo, para cada
z€ E—0E = f~1(0Ds) N B., existe un entorno de E — OF en el que ¢ = f, y podemos
garantizar que v es una submersién en z pues f lo es en dicho entorno.

» Ahora, si z € OF, denotando f(z) =t € Ds por el lema anterior se cumple que f~!(t)
interseca transversalmente a S, en z, y por tanto, si restringimos f a dF seguimos teniendo
una submersion.
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Ademas, 1 es propia. Sea K C 0Ds un conjunto compacto, luego cerrado en dDs. Como ¥ es
continua, ¢~ (K) es cerrado en E, que es acotado, luego ¢~ '(K) es un compacto en E. Por
tanto i es propia.

Asi, por el teorema de Ehresmann 1) es una fibracién localmente trivial. O

2.6. Equivalencia entre las fibraciones de Milnor en la esfera y
en el tubo

Comencemos viendo qué significa que dos fibraciones son equivalentes.

Definicion 2.6.1. Se dice que dos fibraciones localmente triviales f : X — Y y f': X’ — Y’ son
equivalentes si existen difeomorfismos ® : X — X'y © : Y — Y’ de manera que O o f = f o ®.

Obsérvese que para una hipersuperficie singular las fibras en el tubo son compactas, mientras
que las de la funciéon argumento son variedades abiertas. Como un espacio es cerrado y el otro
es abierto, no puede haber un difeomorfismo entre el tubo y la esfera sin el link. La equivalencia
entre ambas fibraciones se prueba para el caso en que restringimos la funcién en el teorema[2.5.1
a la bola abierta IE%G, restriccién que renombramos de la forma siguiente

o

Y= f|f*1(BD5)mIB55'

Teorema 2.6.1. Las fibraciones localmente triviales
d: fTYODs) NBe — D5 y ¢ :S. — Link(f,0) — S,
donde esta sequnda es la definida en el teorema son equivalentes.

Para demostrar esta equivalencia se procede en dos etapas.

1. Primero se prueba que 1/1 es equivalente a ¢?, la fibracién que se obtiene al restringir

¢ = Bls.— -1 (y)-

2. Después se comprueba que gb y ¢ también son equivalentes.

Para demostrar la primera parte, se plantean los dos lemas siguientes. En el primero de estos
lemas construimos un campo apropiado, a partir del cual en el segundo probaremos que existe
un difeomorfismo entre el tubo abierto f~1(0Ds) NB, y el espacio S, — f~!(Ds) que preserva las
fibras.

Lema 2.6.1. Eziste un campo diferenciable de vectores v(z) con z € B — V(f) de modo que el
producto escalar:

(v(2), V® Log f(2))
es real y positivo para todo z € Be — V(f), y que el producto:

(v(2), 2)

tiene parte real positiva constante.

Demostracién. Se construye localmente de modo andlogo al de la demostracion del teorema
2.4.1] Una representacion grafica de lo que buscamos se presenta en la figura 2.1

Sea zp € B — V(f). Se tienen las dos opciones siguientes.
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Figura 2.1: Diagrama del campo de vectores que se construye para “inflar” el tubo de Milnor y
llevarlo sobre la esfera de Milnor. Imagen extraida de [15].

» Si 29 y VCLog f (z0) son linealmente independientes sobre el cuerpo de los complejos,
entonces existe un entorno abierto U, de zp en B, — V(f) en el que se mantiene dicha
independencia lineal para cada z* € U,, y el correspondiente V® Log f(2*). Asi, dado
z* € Uy, el sistema de ecuaciones lineales:

(v*,VELog f(2*)) = 1,

(v*,2%) =1,

tiene una solucién v* que cumple las condiciones del enunciado por definicién. De este modo
definimos el campo local v,,(2*) = v* para cada z* € U,,, campliendo lo que buscabamos.

» Si V€ Log f(20) = Az con A € C se cumple por el lema que R(A) > 0. Asi, si
consideramos el vector complejo Azg se verifica que

(A20, VE Log f(20)) = ||Az0]|* > 0

Y que
R(Az0,20) = R(A)|20])* > 0.

Las dos condiciones anteriores sobre los productos hermiticos son condiciones abiertas,
luego podemos asegurar que se verifican para cada z* € U,,, con U, un entorno abierto
de zp en B, — V/(f). Asi, estableciendo v,,(z*) = A\z* para cada z* € U,, se tiene el campo
local que buscabamos.

Con esto, tomamos una particion diferenciable de la unidad subordinada a los entornos {U, } v
extendemos el campo local a uno global v(z) definido en B, — V(). Para asegurar que la parte
real es constante ademés de positiva, simplemente establecemos la normalizacion

haciendo que sea siempre igual a 1. Obsérvese que esto esta bien definido pues el denominador
no se anula nunca. O

Lema 2.6.2. Existe un difeomorfismo entre f_l(O]]o])(;) NB. y Sc — f~1(Ds) que lleva difeomor-
ficamente la fibra ¢ ~'(c) = f~1(c) NBe en la fibra ¢~1(c/|c|), con |c| = 6.
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Demostracion. Tomando el campo cuya existencia acabamos de probar, consideramos para
cada zp € f~1(0Ds) N B, su curva integral y(¢) que cumple la condicién inicial v(0) = zo.

Como tenemos que:

dLOa%“é;(’Y(t)) = (7/(t), V Log f(1(t)))

es real y positivo, y dado que
Log f =log|f| +iarg f

podemos afirmar que el argumento de f(7y(t)) es constante y que su modulo es una funcion
estrictamente creciente en ¢.

Ademas, la condicion:

dy®)* _ d

o = 2RO, 7(8) = 2R (£),7(1) > 0

también nos garantiza que |y(t)| es una funcion creciente de t.

Con estas dos conclusiones tenemos que el camino anterior que empieza en un punto zg €
f~H0Ds) N B,, lo aleja del origen en una direccion en la que aumenta |f| hasta llevarlo a otro
punto z; € S, para algtn valor del parametro, pongamos ¢t = ¢;. De hecho, se cumple que el
punto z; esta contenido en S, — f~!(IDs), pues al ser | f| estrictamente creciente sobre el camino

7(t), se tiene | f(z1)] > | £(z0)] = || = 6.

Ademss, si en particular zg € f~1(c) para un cierto ¢ € 9Dy se verifica:

fl20) ¢ f(z1)

o)l e~ [fG)l

pues como veiamos antes, en estos caminos el argumento de la funciéon permanece constante. Asi
vemos que se tiene la correspondencia entre las fibras que se establece en el enunciado.

Finalmente, esta es toda la imagen, pues podemos hacer el proceso contrario al aqui expuesto:
considerar un punto en S, — f~!(Ds) y tomar el camino en sentido inverso (reparametrizando la
solucién) de modo que lo termina llevando a un punto en f~!(0Dg) N Be. Con esto ademas se
prueba que esta correspondencia diferenciable entre ambos espacios es un difeomorfismo, pues
tiene inversa asimismo diferenciable. O

Vayamos ahora con la segunda parte de la prueba que comentabamos.
Lema 2.6.3. Las fibraciones (;5 = qﬁ = ¢|Se—f—1(]n>5) y ¢ son equivalentes.

Demostracion. Siguiendo el proceso al que ya estamos habituados, se debe construir un campo
diferenciable de S, — Link(V') cuyas curvas integrales nos den un difeomorfismo que preserve las
fibras entre S, — Link(V) y S, — f~1(IDs). Para ello, consideremos la funcién real positiva |f|
restringida a S — Link(V).

En primer lugar se utiliza el lema de Seleccién de Curvas para mostrar que para cada 8 € R
existe un § > 0 suficientemente pequeno de manera que la restriccion

| fll Forng-1(y)rs.

no tiene puntos criticos. Si se supone lo contrario, existe una sucesion {z,} de puntos criticos de
| f| restringida a Fy arbitrariamente proximos a Link(V(f),0), luego con |f(z,)| — 0 conforme
n — oo. Por la compacidad de S, este conjunto de puntos tendra un punto de acumulacién zg
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que por continuidad de la funciéon |f| debe estar en zp € Link(V'(f),0). El lema de Seleccion
de Curvas nos permite concluir que existe una curva v : (0,€') — S¢ — Link(V(f),0) cuyos
puntos son todos puntos criticos de |f| restringida a Fp, y con «(t) — zp cuando ¢t — 0. Pero
entonces |f(v(t))| debe ser constante y, por continuidad deberia ser constantemente nula, lo que
es incompatible con que 7(t) esté en S —Link(V'(f),0) para ¢t > 0. Por tanto lo que afirmabamos
debe ser falso.

Si consideramos la aplicacion que asocia a cada @ € S! el § > 0 que cumple lo que acabamos
de probar, se puede comprobar que esta es continua. Asi, como S' es un compacto, se puede
escoger un § que verifique que la restriccion de |f| en toda fibra Fy no tiene puntos criticos en
1D NSe.

Ahora, construyamos el campo sobre S, — Link(V') siguiendo los pasos siguientes.

1. Sea un ¢’ tal que 0 < ¢ < §. Cambiamos el § que habiamos obtenido en la discusion
anterior por 6 — ¢, lo que nos permite asumir que la restriccion de |f| a las fibras Fy no
tiene puntos criticos en f~H (D} ) N'Se.

2. Sean z € f~1(D},5) NSe y denotamos a la restriccion |f|g = | f|l,- Se define el campo
Vifle

v(z) = /] 5
IVIflol

Este campo es tangente a las fibras Fy por definiciéon. Ademaés es diferenciable puesto que
| f|4 no tiene puntos criticos en f~! (D% +s/) NSe y por tanto el denominador no se anula.

(2).

3. Con esta definicion del campo v(z), una curva integral del mismo 7(t) que comience en
~v(0) € Fp se mantiene en dicha fibra. Asi, podemos comprobar que se verifica

d|(f o) (@)

"D — /() 91 o) =

1
V|1, VIf],) = 1.

Por tanto, se tiene: |f(y(t))| =t + |f(7(0))]

4. Finalmente consideramos una funcion diferenciable g : (0,4+00) — [0,1] que, como las
particiones diferenciables de la unidad, nos permita extender este campo a toda la esfera.
Esto se hace imponiendo que g sea tal que:

w g(t)=1sit <9,
» g(t) €[0,1] parat € (0,0 +0") y
= g(t)=0sit>d+76.
Con esta definimos el campo que buscidbamos en S, — Link(V(f),0) es el dado por:

w(z) = { v(2)g(If(2)]) siz€Sen 1 (Djy)

10 en c. c.

Puesto que g es diferenciable, w(z) es diferenciable.

Gracias a este campo, encontramos el difeomorfismo de S, — Link(V (f),0) en S, — f~1(Ds) dado
por la correspondencia © que definiremos a continuacion. Sea ~y(t) la curva integral del campo
w(z) con condicion inicial zg € S —Link(V(f),0), que supongamos que esté en una fibra zg € Fy.

= Sizg €S — f1(Dj,s), entonces la curva deja fijo este punto. Asi, definimos ©(z) = 2o
vy hemos terminado.
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m Sizg €ScNf _1(]D)§ +s), entonces, por como hemos ido tomando los campos, esta cur-
va lleva zy a otros puntos y(t) en la misma fibra Fy tales que |f(y(t))| es mayor que
|f(20)|. En particular, si se establece ©(zg) = 7(d), entonces tendremos que O(zg) esta en

(Sen fHD;,5)) — fH(Ds) C Se — f7H(Dy).

Esta funciéon © constituye el difeomorfismo que conserva las fibras que buscabamos y concluye
la prueba. Que es un difeomorfismo se ve reparametrizando los caminos para dar la inversa
diferenciable. O

Con todo lo que hemos desarrollado en las dos tltimas secciones, se fijan las siguientes notaciones.

Definicién 2.6.2. Se denomina fibra de Milnor a la fibra abierta de la aplicacion del teorema

2.4.1] '
Fy := qb_l(ew)a

que esté bien definida pues las fibras Fy y Fyp son difeomorfas para valores 6 # 6.

Se denomina fibra de Milnor compacta o fibra de Milnor en el tubo a la fibra de la aplicaciéon del
teorema [2.5.1] dada por
Fy:= f1(s) N B,

para s € dDg con & > 0 en las hipotesis del teorema. De nuevo, esta bien definida pues esta fibra
es difeomorfa a la que resulta de considerar cualquier otro s’ € 0Dy distinto al anterior.

Por lo que acabamos de demostrar, se tiene que Fy es difeomorfa a Fy, y que Fp lo es a }%5 =
f~s) NB..

Conocer estas dos fibraciones equivalentes asociadas al germen de una hipersuperficie proporcio-
na gran riqueza al estudio de sus propiedades. La primera fibracién, como veremos pronto, nos
permitiré obtener informaciéon importante sobre la topologia de las fibras. La segunda fibracion
resulta més util de cara a generalizaciones que se realizaron de los conceptos desarrollados por
Milnor, que aqui no estudiaremos. Aqui la utilizaremos especialmente en el estudio del caso de
una singularidad aislada que desarrollaremos en el capitulo[d Ademas, es interesante puesto que
muestra la fibra singular como el limite de una familia de variedades complejas que degeneran
en la hipersuperficie.

Obsérvese ademaés, que atendiendo a la prueba de la estructura codnica que realizabamos, se
tiene que las fibraciones que obtenemos son difeomorfas independientemente de la eleccién de
e >0y d > 0 que realicemos (siempre que estos cumplan las propiedades necesarias que hemos
revisado).
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Capitulo 3

Topologia de la fibra de Milnor y el link

En este capitulo pasaremos a estudiar la topologia de la fibra de Milnor (definicion [2.6.2)) y del
link (definicion [1.4.1]). Dada una hipersuperficie de C™ singular en el origen el objetivo consiste
en probar los siguientes resultados.

Teorema 3.0.1. La fibra de Milnor tiene el tipo de homotopia de un CW-complejo finito de
dimension n — 1.

Teorema 3.0.2. Sin >3 el Link(f,0) es un espacio (n — 3)-conezxo.

Esto significa que sus grupos de homotopia son todos triviales hasta orden n — 3. El caso n = 3
significa que el link es conexo, y el caso n = 4 que es conexo y simplemente conexo. Para el caso
con n = 2 el link no tiene por qué ser conexo. De hecho, en el primer capitulo veiamos que para
la hipersuperficie singular en el origen contenida en C? definida por los ceros de f(z,y) = zy, el
Link(f,0) era el enlace de Hopf, que no es conexo.

Para probar los resultados que acabamos de enunciar, se hace uso de forma importante de la
teoria de Morse para funciones reales. Por ello, comenzamos el capitulo revisando los contenidos
mas importantes de dicha teoria, para después pasar a demostrar estos enunciados.

3.1. Teoria de Morse

La teoria de Morse permite reconstruir la topologia de una variedad diferenciable M a partir de
una funcién diferenciable f : M — R con puntos criticos no degenerados, a la que llamaremos
funciéon de Morse. A estos puntos criticos se les asignard un numero llamado indice de Morse,
que influird en la reconstuccion de la topologia. Dada una variedad diferenciable M siempre
existe una funciéon de Morse como la anterior cuyos puntos criticos tienen valores distintos entre
si. Ademés, se puede obtener deformando una funciéon diferenciable arbitraria f : M — R.
En particular, las funciones de Morse son densas en C?(M,R) con la topologia adecuada [14].
Desarrollemos los conceptos que acabamos de mencionar con un poco mas de profundidad.

Los puntos criticos de una aplicaciéon f : M — N diferenciable entre dos variedades diferenciables
son aquellos en los que la matriz Jacobiana no alcanza el rango méximo que puede tener como
aplicacion lineal entre los tangentes. Por tanto, con la primera derivada podemos identificar
dichos puntos criticos. Por su lado, la segunda derivada nos permitiré establecer una clasificacién
entre los mismos.

Definiciéon 3.1.1. Un punto critico xg € M de una funcién diferenciable f : M — R se
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denomina no degenerado siy sblo si la Hessiana de la funcién en dicho punto es no degenerada.
Es decir, cuando se verifica:

Hypo(X,Y)=0, VYT, M & X=0,
con Hy , (X,Y) la hessiana de f en zg evaluada en dos vectores del tangente T, M.

Definicién 3.1.2. Una funcién diferenciable f : M — R es una funcidn de Morse si y sblo si
todos sus puntos criticos son no degenerados.

Veamos como hacer mas manejable este concepto. Sea un sistema de coordenadas local (1, ..., 2™)
en un entorno de xy € M de modo que z'(zg) = 0,Vi = 1, ..., m. Entonces, dos campos tangentes
a la variedad X e Y cualesquiera tienen expresion local dada por:

X=> X0, Y=Y Y0,
i J

En esta expresion, {0y, } denota la base de los espacios tangentes dada por los campos coorde-
nados. De esta manera tenemos también una expresion local para la Hessiana, pues:

Hj.o(X,Y) ZH XY Hyj == H} 3(0n;, 0n)).

Y asi, un punto critico zg es no degenerado si y solo si det(H;;) # 0.

Ademas, la Hessiana expresada en este sistema de coordenadas local nos permite definir una
funcién en un entorno de xg dada por:

Hygo( Z HUCC e
la cual aparece en el desarrollo de Taylor de f en xg, de la manera siguiente
1
[(@) = f(w0) + S Hpa(2) +O(3).

De hecho, existe un sistema de coordenadas en torno a cada punto critico en el que la funcién
de Morse adquiere la expresion del polinomio cuadratico dado por la Hessiana.

Teorema 3.1.1. Sea f : M — R una funcion diferenciable, m = dim M y xo € M un punto
critico no degenerado de f. Entonces, existe un entorno abierto U de xg en M y un sistema local
de coordenadas (x!,...,2™) en U de modo que

1
“Hypo(x), Vrel.

2i(z0) =0, Vi=1,...,m & f(@) = flzo) + 5

La prueba de este resultado, que es fundamental en esta teoria, puede consultarse en [14] (teorema
1.12). Con esto, definamos uno de los conceptos fundamentales de la Teoria de Morse: el indice
de Morse de un punto critico. Para ello, es preciso primero recordar el siguiente resultado de
algebra lineal.

Sea V' un espacio vectorial real de dimension finitay g : V x V' — R una forma bilineal simétrica
no degenerada. Entonces, existe al menos una base del espacio (e, ..., €,) de manera que para
cada vector: v =) . v'e; se tiene

g(v,v) = — <|vl|2 + ..+ ]v)‘\Q) + [P L o2
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El entero A es independiente de la base y se denomina indice de g. Se define también como la
dimensién del mayor subespacio vectorial V_ C V' que verifica que g restringida al mismo es
definida negativa.

Definicién 3.1.3. Sea xp un punto critico no degenerado de la funcion diferenciable f : M — R.
Se define su indice de Morse, denotado por A(xg), como el indice de la Hessiana Hy .

Con esto, se deduce del teorema [3.1.1]

Lema 3.1.1 (de Morse). Si zg es un punto critico no degenerado de indice A de una funcion

diferenciable f : M — R, entonces existe un sistema local de coordenadas (z%,...,x™) en un

entorno de xq, de modo que x'(xg) = 0,Yi y que ademds verifica

A m
f=1Fflwo) =D @)+ Y ()
i=1 J=A+1

Visto esto, dada una funcion f : M — R diferenciable se define para cada a € R:

M*={ze M: f(x) <a}.

La idea en que se basa la teoria de Morse es que al aumentar ¢ de manera continua en un
conjunto de valores regulares, la topologia de M“ no varia. Este resultado se formaliza en el
siguiente teorema.

Teorema 3.1.2. Sea f : M — R wuna funcion diferenciable. Sean a < b y supongamos que
f([a,b]) ={x € M :a < f(z) < b} es compacto y no contiene puntos criticos de f. Entonces
M?® es difeomorfo a M°. Ademds, M® es un retracto de deformacion de MP, luego la inclusion
M® — MP® es una equivalencia homotdpica.

La idea de la demostracion reside en aplastar M? hasta convertirlo en M® a través de trayectorias
ortogonales a las hipersuperficies f = cte. El siguiente resultado clave de la teoria de Morse
describe con precisiéon cé6mo son estos cambios para los puntos criticos no degenerados. De esta
manera, a partir de una funcién de Morse sobre una variedad podemos recuperar la topologia
de la misma. Para entender este resultado es preciso conocer antes las siguientes nociones.

Definicion 3.1.4. Denotamos por D" a la bola cerrada de dimension n, definida por D" :=
{z € R" : ||z|| < 1}. Se denomina n-celda a cualquier espacio homeomorfo a dicha bola.

Por ejemplo, el intervalo [—1,1] es una l-celda, pues coincide con D! = {x € R : |z| < 1}.
Una bola cerrada de radio arbitrario también es trivialmente una celda de la dimensiéon que
corresponda. Adjuntar n-celdas es una técnica que se emplea mucho en topologia algebraica
para obtener un nuevo espacio topolégico a partir de otro conocido. Esto consiste en, dado un
espacio topolégico X y una funcién continua ¢ : D™ — X, considerar, a partir de la union
disjunta de X y la n-celda, el espacio cociente dado por:

X u Db

~

P

I

con ~, la relaciéon de equivalencia que induce la funcién ¢ entre la frontera de la bola y su
imagen en X: p(x) ~ z. Con esto, ya estamos en disposicion de enunciar el siguiente resultado.

Teorema 3.1.3. Sea f : M — R una funcion diferenciable y sea x € M un punto critico no
degenerado con indice \. Supongamos que f(x) = ¢ y que para cierto eg > 0, f~1([c — €, c+ o))
es compacto y no contiene mds puntos criticos de x. Entonces, para cada 0 < € < €y se tiene
que MCT¢ tiene el tipo de homotopia de M€ tras adjuntarle una \-celda.
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Como anuncidbamos, este resultado significa que conociendo una funcién de Morse cuyos puntos
criticos tienen valores criticos distintos, y los indices de sus puntos criticos, podemos recuperar
el tipo de homotopia de la variedad adjuntando A-celdas segin corresponda. Asi, finalmente se
puede demostrar el siguiente resultado, que es el que nosotros aplicaremos para poder calcular
el tipo de homotopia de las fibras de Milnor.

Teorema 3.1.4. Si [ es una funcion de Morse en una variedad diferenciable M, y si cada
M® es compacta, entonces M tiene el tipo de homotopia de un CW-complejo, con una celda de
dimension A por cada punto critico de indice \.

La prueba de estos tres tltimos resultados puede encontrarse en los teoremas 3.1, 3.2 y 3.5 de
[12].

3.2. Prueba del teorema sobre el tipo de homotopia de las fibras

Con esto, nos encontramos en disposiciéon de probar el teorema Este nos dice que para
una hipersuperficie de C” singular en el origen la fibra de Milnor Fy tiene el tipo de homotopia
de un CW-complejo finito de dimensiéon n — 1.

La demostracion de dicho resultado se basa en aplicar el teorema [3.1.4] a una funciéon de Morse
basada en la restriccion de | f| a la fibra Fy y asi concluir el resultado. Para poder hacer todo esto,
el primer paso consiste en identificar los puntos criticos de esa restriccién. Para ello, resultara
util considerar la funcién diferenciable ag : Fy — R, en la fibra Fy, definida por:

ag(z) = log | f(2)].

Notese que los puntos criticos de esta funcion son los mismos que los de la funcién | f| restringida
a Fy. Veamos como caracterizar los mismos.

Lema 3.2.1. Los puntos criticos de la funcion ag en Fy son aquellos zg € Fy tales que ve Log f(z0)
es un maultiplo complejo de z.

Demostracion. Por la definiciéon del valor principal del logaritmo, tenemos que

log | f(2)] = R Log f(2),

luego la derivada direccional de log |f| en la direccion v (vector tangente a Fy en zg) viene dada
por
R(v, V® Log f(20)).

Por tanto, un punto zyp € Fy es un punto critico de ag(z) si cada derivada direccional de las
anteriores es nula, es decir, si V© Log f(z9) pertenece al complemento ortogonal euclideo a Fy en
2p. Obtengamos una base de dicho espacio. Como Fjy es una subvariedad de R?" con codimensién
2, necesitamos dos vectores linealmente independientes.

Supongamos que tenemos una curva z = y(t) en Fp que pasa por 7y(ty) = z9 € Fy con vector
tangente 7/(tp) = v. Vimos en la demostracion del teorema m que la derivada de la funcion 6
sobre el camino anterior venia dada por:

d(fo~)

5 (to) = R(Y(to), V" Log f (20)) = R(v,iV" Log f(20)).

En este caso, esta derivada debe anularse pues al restringirnos a Fy la funcién 6 es constante.
Asi, iV® Log f(z) pertenece al complemento ortogonal que buscamos caracterizar.
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Por otro lado, como Fy C Se, un vector tangente a Fy también es tangente a la esfera y cumple:

R{v, z9) = 0.

De hecho, por el lema hemos visto que los vectores zg y iVC Log f(zp) son linealmente
independientes si € > 0 es suficientemente pequeno, y asi, constituyen la base que buscdbamos.
Con todo esto, zp sera un punto critico de ag si y soélo si V€ Log f(zp) se puede expresar como
combinacion lineal real de los vectores zg e iV Log f(zy) y con esto se prueba el resultado. [

El siguiente paso en la teoria de Morse consiste en computar la Hessiana en los puntos criticos de
la funcién que estemos estudiando, para poder calcular el indice de Morse. Para ello, observemos
que la Hessiana aplicada sobre un vector v del espacio tangente a Fy en zy se puede expresar a
partir de una curva ~y(t) con vector velocidad +/(tg) = v en y(ty) = 2¢ a través de la derivada
segunda

d*(ag o) (t

— gz (o).
Veamos como se puede caracterizar esta derivada segunda utilizando que zg es un punto critico.

Lema 3.2.2. Si zg € Fy es un punto critico de ag, la sequnda derivada anterior estd dada por
d*(ag o) 2
£ 20 () = 3 R(Djeovjoe) — clof,

donde (Dji) es una matriz de nimeros complejos y ¢ un nidmero real positivo.

Demostracion. Como nos estamos restringiendo a la fibra Fy, se cumple que la funcién f sobre
el camino que consideramos (t), con v(tp) = 20 y 7' (to) = v, tiene argumento constante, de
modo que

ag(v(t)) = log |f(v(t))| = Log f(~(t)) — if.

Derivando respecto a t obtenemos

o5 (Clon) (3).

Jj=1

y derivando de nuevo
- & [(ton) (5) (3)- (52%0m) ()]

Si ahora evaluamos en ¢t = {3 y tenemos en cuenta que por la caracterizacion de los puntos
criticos de ag estudiada previamente se cumple

V€ Log f(20) = Az

0% Log f
= (. )

podemos reescribir la ecuaciéon para la derivada segunda de ag como sigue:

con A € C, renombrando

d*(ag o U
(dgtzw(to) = > Djwvjue + (" (to), Azo).
7,k=1

29



No olvidemos que puesto que la funcién ag era real, también lo es su derivada. Multiplicando
ambos lados por A y tomando la parte real se tiene

d*(ag o)

U2 RO = D RODsv) + PR (t0), 20)

Jvkzl

Por otro lado, si derivamos dos veces la igualdad (y(t),7(t)) = cte. (recordemos que el camino
esta contenido en la esfera de Milnor) y evaluamos en t = t( encontramos:

(Y (), 7)) + (v(£),7'(8)) = 0,
(8, 7(1) + 205 (1),7' (1) + (v(1), 7" (1) =0 = R (o), v(to)) = — vl
Finalmente, sustituyendo esta tltima igualdad en la expresiéon que tenfamos llegamos a

d? (ag o)
dt?

m

(t)R(A) = Y R(ADjrvv) — [Mvl?
k=1

y dividiendo entre R(A), que debe ser positivo de nuevo por el lema tenemos lo que
buscabamos. O

Con esta caracterizacion, ya estamos en disposicién de calcular el indice de Morse. Como en
este caso no podemos asegurar que los puntos criticos sean no degenerados, interpretamos el
indice de Morse en uno de estos puntos criticos zg como la dimensién del mayor subespacio del
tangente a Fy en zg en el cual la forma cuadratica definida por la matriz de la Hessiana en zy es
definida negativa. Se tiene el siguiente resultado.

Lema 3.2.3. El indice de Morse de ag : Fy — R en un punto critico es mayor o igual que n— 1.

Demostracion. En el lema anterior se ha demostrado que la Hessiana de ag en un punto critico
zp se podia expresar como la siguiente forma cuadrética en el espacio tangente a Fy en zg

H(v) =Y R(Djrvjvr) — clvf?,

B 02 Log f
= (i )

Veamos cudl es la dimensiéon del mayor subespacio sobre el cual la forma anterior es definida
negativa.

con

La clave en esta demostracion es percatarse de lo siguiente: si v € T, Fy es tal que H(v) > 0,
entonces H (iv) < 0. En efecto, como ¢ es un nimero real positivo, que se cumpla H(v) > 0
significa que el primer término de la suma anterior es positivo. De este modo, cambiar v por
iv lo cambia de signo, mientras que el segundo término continta siendo negativo, lo cual nos
da H(iv) < 0. Ademas, como Fy es una variedad compleja (tiene dimension par 2n — 2) su
tangente es un espacio vectorial complejo, luego si v € T,,Fy entonces v € T,,Fp y todo esta
bien definido.

Atendiendo a esta distincion, se divide el espacio tangente en dos partes: T, Fyp = Ty @ 11, de
modo que la Hessiana sea definida negativa sobre Ty y semidefinida positiva sobre T7. Asi, el
indice de Morse I que buscamos coincide con la dimensiéon de Tp. Sin embargo, por lo que se
acaba de ver, se tiene que i77 debe estar contenido en Ty, luego encontramos que:

I = dim(Tp) > dim(iTy) = dim(7h) = (2n — 2) — 1,
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de donde obtenemos que I > n — 1. Obsérvese que hemos utilizado que las fibras Fy tienen
codimension real 2, luego esta también es la codimension de su tangente. ]

Finalmente, hacemos la comprobaciéon de que todos los puntos criticos de la funcién ag estan
contenidos en un compacto de Fy. Este punto cobrard relevancia algo méas adelante, cuando
comprobemos que hay una funcién con una cantidad finita de puntos criticos no degenerados.

Lema 3.2.4. Euziste una constante ng > 0 tal que todos los puntos criticos de ag estin en el
subespacio compacto de Fy definido por |f(z)| > ng.

Demostracion. Se procede por reduccion al absurdo. Supongamos que existen puntos criticos
en Fy que verifican que |f(z)| es arbitrariamente proximo a cero. Entonces tiene que existir un
20 € Se que sea limite de una sucesion de estos puntos criticos y de manera que f(zp) = 0. En
ese caso, nos encontramos en una situacién como la de las hipotesis del Lema de Seleccion de la
Curva. Por usar las mismas notaciones que entonces, llamando:

U={z¢cFy:|f(2)]*>0}

v V al conjunto analitico dado por los puntos criticos de ag, se tiene zg € V N U. De este modo
podemos asegurar que existe una curva diferenciable () definida en un cierto intervalo [0, €) que
cumple v(0) = 2o, luego | f(7(0))| = 0 y que toma valores en puntos criticos de ag(z) = log|f(z)|
sit > 0. Esto dltimo implica que ag debe ser constante sobre la curva, luego también debe serlo
|f(2)|, que es estrictamente positivo en Fy. Esto impide que la norma tienda a 0 al acercarnos a
zp, lo que completa la prueba. O

Recapitulemos lo que hemos conseguido hasta ahora y veamos qué nos queda por conseguir.
Hemos conseguido caracterizar los puntos criticos de ag, que son los mismos que los de |f],
y calcular su indice de Morse. También hemos comprobado que todos estos puntos criticos se
encuentran en un subconjunto compacto de Fy. Sin embargo, no podemos asegurar que ag o | f|
sean funciones de Morse, es decir, cuyos puntos criticos sean todos no degenerados. Para poder
solucionar este punto recurrimos al siguiente resultado que se puede encontrar en [13].

Teorema 3.2.1. Sea g una funcion real de clase C*° sobre una variedad diferenciable M. En-
tonces, para cada entorno N de los puntos criticos de g existe un funcion real ® en la variedad
de clase C? de manera que sus derivadas primera y sequnda convergen uniformemente en los
compactos de M a las derivadas primera y sequnda de g; y de manera que

g=® en M — N,

tentendo ® a lo sumo puntos criticos no degenerados en N.

Atendiendo a este, podemos asegurar lo siguiente con respecto a las funciones con las que estamos
trabajando:

Lema 3.2.5. Eziste una funcion diferenciable (de clase C?) dada por
sg: Fy — RT

de modo que todos los puntos criticos de sy son no degenerados, tienen indice de Morse mayor
o igual que n — 1 y tal que

so(2) = [f(2)]

para puntos z con |f(2)| < ne para una cierta constante ng > 0.
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Demostraciéon. El anico punto que no se sigue de aplicar el teorema anterior es el concerniente
al indice de los puntos de Morse. Este se deduce de la convergencia uniforme de las derivadas
primera y segunda. Bajo estas hipotesis se puede asegurar (ver, por ejemplo, el lema 22.4 de
[12]) que el indice de Morse de los puntos criticos de la funcion sy debe ser mayor o igual que el
de los puntos criticos de |f|, para los cuales ya habjamos visto que eran mayores o iguales que
n— 1.

Ademas, como hemos probado que todos los puntos criticos de la funcion ag (que son los mismos
que los de |f]) verifican |f(z)| > ns para una cierta constante 1y > 0, se tiene que los valores
criticos de esta funcion | f| estan acotados inferiormente y también se cumple la altima condicion:
se y | f| deben coincidir para puntos z € Fp con |f(z)| arbitrariamente proximo a cero. O

Como los puntos criticos de sg son no degenerados se puede comprobar que son puntos aislados.
Para dicha comprobacion se puede usar por ejemplo el lema de Morse (lema, pues compu-
tando el gradiente de una funcién de Morse en dichas coordenadas, se observa que el tnico cero
del mismo en un entorno de cada punto critico es precisamente dicho punto critico. Ademas, los
puntos criticos estan todos en un subespacio compacto de Fy, como ocurria con los de ag pues la
primera derivada converge uniformemente a la de esta funcién. De este modo, podemos asegurar
que sg tiene solo una cantidad finita de dichos puntos criticos.

Con todo, ya estamos en disposiciéon de probar el teorema sobre el tipo de homotopia de
la fibra de Milnor.

Demostracion (del teorema . Préacticamente ya hemos hecho todo el trabajo necesario
para llegar a una funcién de Morse sobre la que poder aplicar el teorema Las hipoétesis del
mismo consisten en encontrar una funciéon g diferenciable real sobre nuestra variedad Fy, cuyos
puntos criticos sean no degenerados y de manera que los conjuntos:

M*={z€e€ Fy:9(z) <a}
sean compactos. En nuestro caso, basta con tomar
9(z) = —log se(2)

que es una funcién diferenciable y real, y que hereda los puntos criticos no degenerados de sg.
Ademas, las subvariedades M*“ son compactas pues g es propia y esta acotada inferiormente.

Finalmente, puesto que el indice de Morse I de los puntos criticos de sg y por tanto los de log sy
es mayor o igual que n—1, se tiene que el indice de Morse de —log sp es 2(n—1)—I1 < n—1. Con
esto, aplicando el teorema, se tiene que Fy tiene el tipo de homotopia de un CW-complejo
de dimensiéon menor o igual que n — 1, compuesto por la adjuncién de una celda de dimension
menor o igual que n — 1 por cada punto critico de g. ]

3.3. Prueba del teorema sobre la topologia del link

Gran parte de los resultados que acabamos de desarrollar se pueden utilizar para demostrar el
teorema [3.0.2] y esto es lo que haremos en esta seccion.

Se busca comprobar para el germen de una hipersuperficie de C” singular en el origen y dado
€ > 0 un radio de Milnor de dicho germen, para n > 3 se tiene que el Link(f,0) es un espacio
(n — 3)-conexo.

Demostracion (del teorema [3.0.2). Sea N, el entorno de Link(f,0) en S, dado por:
Ny={z€Sc:|f(2)] <n} =S8N f_l(}D)n).
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Consideramos la funcion
a:S.—Link(f,0) = R, a(z)=log|f(z)],

que restringida a cada fibra nos da la funcién ag con la que hemos trabajado en la seccién
anterior. Siguiendo exactamente la prueba del lema [3.2.4] se puede afirmar que existe un n > 0
suficientemente pequeno tal que todos los puntos criticos de a(z) satisfacen |f(z)| > 7. De este
modo a(z) no tiene puntos criticos en el N,, asociado al 7 > 0 que acabamos de encontrar, y esto
implica que IV, es una variedad diferenciable con borde que se puede ver como los conjuntos de
nivel correspondientes.

Por otro lado, podemos afirmar también que los puntos criticos de la funcion a(z) tienen todos
indice mayor o igual que n — 1. Dicho indice es la dimensién del mayor subespacio del tangente
en el que la hessiana es definida positiva. Como ap = a|f,, los puntos criticos de ay tienen indice
mayor o igual que n — 1 y dado z9 € S, — Link(f,0) se tiene T,,Fy C T,S, se debe cumplir
lo que enuncidbamos. Asi, aplicando de nuevo el teorema en este caso a la funcion a(z),
podemos afirmar que existe una funciéon de Morse

5:S. — Link(f,0) — R

cuyos puntos criticos no degenerados tienen indice mayor o igual que n—1y tal que s(z) = | f(2)|
cuando |f(z)| es suficientemente proximo a cero.

Si consideramos la funcion s(z) restringida a S, — 1\777 se tiene entonces que la esfera tiene el
tipo de homotopia de un complejo formado adjuntando a NN;, un conjunto finito de celdas de
dimension mayor o igual que n — 1: una por cada punto critico de la funciéon s(z) en S, — Nn-
Adjuntar celdas de dimension > n — 1 no modifica los grupos de homotopia hasta orden < n —3.
Por tanto:

7i(Ny) = mi(Se)

para i < n — 3. Como estamos trabajando en n > 3, estas esferas tienen dimension 2n — 1 > 5,
y por tanto sus grupos de homotopia son nulos hasta orden i < 2n — 1, luego en particular para
orden 1 <n — 3.

Para concluir la prueba basta con ver que Link(f,0) es un retracto de deformacién de su entorno
N,,. Esto se ve levantando el retracto de deformacién que contrae el disco cerrado de radio n > 0
al origen. Asi, m;(Link(f,0)) = m;(/N,;) y tenemos lo que querfamos. O
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Capitulo 4

Hipersuperficies con una singularidad
alslada

Todos los resultados que hemos obtenido hasta el momento son vélidos para cualquier hipersuper-
ficie singular. Sin embargo, en caso de que estudiemos una hipersuperficie con una singularidad
aislada en el origen, se pueden extraer algunas conclusiones mas que resultan interesantes. En
este capitulo, comenzaremos viendo en la seccién como se pueden combinar las condiciones
de transversalidad que hemos trabajado en el caso particular de singularidades aisladas. Poste-
riormente, en la seccién estudiaremos que en este caso, el teorema de fibraciéon de Milnor
implica que la esfera de Milnor admite una descomposiciéon de libro abierto con el link como
visagra. Finalmente, dedicaremos las tltimas secciones a afinar el resultado sobre el tipo de
homotopia de las fibras. En este caso, se verifica el siguiente enunciado.

Teorema 4.0.1. Si (V(f),0) tiene en 0 una singularidad aislada, entonces las fibras de Milnor
tienen el tipo de homotopia de un bouquet de esferas de dimension n — 1.

Para demostrarlo, se hace uso de numerosas herramientas de topologia algebraica. Aqui, primero
comprobaremos que las fibras tienen la homologia de un punto para orden menor a n — 1, como
sucede con el bouquet. Posteriormente explicitaremos una inclusién de un modelo homotépico
del bouquet de esferas en la fibra, inclusiéon que resultard ser una equivalencia homotopica.
No comprobaremos que se tiene dicha equivalencia homotépica, pues involucra herramientas de
homologia algo alejadas de las que venimos usando en el trabajo. Sin embargo, esta seria la
forma de terminar la demostracion del lema .01l

4.1. Condiciones de transversalidad

Antes de nada, merece la pena ver como en el caso de singularidades aisladas se pueden combinar
la proposicion m (que solo es valida en este caso) y el lema para obtener un resultado
més fuerte que serd muy util en las demostraciones del capitulo.

Recordemos primero estos resultados. Sea el germen de una hipersuperficie (V(f),0) con una
singularidad aislada en el origen. La proposicién nos asegura que para € > (0 radio de
Milnor, la hipersuperficie V'(f) interseca transversalmente a la esfera de Milnor S,. Por su lado,
el lema nos dice que para dicho radio de Milnor, existe un § > 0 suficientemente pequeno
tal que para cada t € C con 0 < [t| < & la fibra f~1(t) interseca transversalmente a S.. Poniendo
en conjunto ambos resultados tenemos que podemos incluir la fibra del 0 en el segundo lema.
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Lema 4.1.1. Si (V(f),0) tiene una singularidad aislada en 0, dado un radio de Milnor € > 0
existe un § > 0 suficientemente pequeno tal que para cada t € Ds la fibra f~1(t) interseca
transversalmente a S..

El poder incluir esta fibra tiene una consecuencia importante.

Lema 4.1.2. En las hipdtesis anteriores, f~'(Ds) NS¢ es difeomorfo a Ds x Link(f,0). En
particular, es una variedad diferenciable con borde.

Es mads, el difeomorfismo g entre ambos espacios hace conmutativo el siguiente diagrama:

1(D5) NS —L— Dy x Link(f,0)

@/

Demostracién. Por las hipétesis, tenemos transversalidad de las fibras f~1(s) con s € Ds y la
esfera S, luego f restringida a f~1(IDs) NS, es una submersion. Asi, al ser también una aplicacién
propia (continua en un dominio compacto) tenemos que es una fibracion localmente trivial sobre
su imagen, que es Dg. Ademés, como el disco es contractible, de hecho podemos asegurar que es
una una fibraciéon trivial. De ahi se deduce que f~1(IDs) NS, es difeomorfo al producto Ds x F
con F' una de las fibras de la aplicaciéon f, que son todas difeomorfas entre si. En particular si
consideramos la fibra dada por f71(0) NS, = Link(f,0) se tiene el resultado. O

Ante esto, se deduce el siguiente resultado..

Lema 4.1.3. El espacio Fy N (f~1(Ds) NSc) es una subvariedad con borde difeomorfa a [0, 6] X
Link(f, 0).

Demostracion. Basta con tomar restricciones en el diagrama conmutativo anterior para un

0 € R fijo
Ty (F71(Ds) NSe) —L— {pe®® : p € [0,0]} x Link(f,0)
=
{pe” : p€[0,0]} C Ds

y tener en cuenta que son difeomorfos

{pe' - p € 0,0]} =0, 4].

4.2. Estructura de libro abierto

Expondremos ahora una aplicacion interesante del teorema de fibracion de Milnor 2.4} para el
caso en que en 0 tengamos una singularidad aislada. Para ello es necesario introducir algunos
conceptos nuevos.

Definicion 4.2.1. Una descomposicion de libro abierto de una variedad diferenciable M consiste
en una subvariedad N de codimensiéon 2 en M, denominada visagra, que verifica las siguientes
propiedades.

a) La subvariedad N se embebe en M con fibrado normal trivial. En este contexto, el espacio
normal en cada punto se define como el complemento ortogonal de su espacio tangente.
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b) Ademas el complementario M — N admite una fibracion diferenciable localmente trivial
sobre St:
¢:M—N — S,

que debe verificar lo siguiente. Consideremos un entorno tubular U de N en M, es decir, un
entorno de N difeomorfo a N x D?, con D? el disco en dimensién 2. Entonces la aplicacion
¢ restringida a U — N, que es difeomorfo a N x (D? — {0}), debe coincidir con la funcién
argumento

Yy
(ﬂf,y) = e
[yl

Las fibras de ¢ se denominan pdginas del libro abierto, y como hemos visto en la definicién de
fibracién localmente trivial, son todas difeomorfas cuando M es conexa.

Ademas, cada pagina se compactifica afiadiendo la visagra N. Esto se puede comprobar viendo
a que la clausura de cada pagina intersecada con U se obtiene anadiéndole el espacio N. Mas
adelante lo probaremos para un caso concreto, aunque el procedimiento que veremos se puede
generalizar. Con estas definiciones, podemos afirmar los siguiente.

Proposicion 4.2.1. Sea (V(f),0) el germen de una hipersuperficie con f holomorfa y O una
singularidad aislada de dicha hipersuperficie. Si € > 0 es un radio de Milnor de dicho conjunto
analitico en torno a 0, entonces la esfera de Milnor S admite una descomposicion de libro abierto
con visagra el Link(f,0).

Demostracion. Esto se deduce casi de forma directa aplicando el teorema de la fibracién de
Milnor Como la singularidad es aislada, el link es liso, y tiene su dimensién bien definida.
El Link(f) tiene codimension 2 en S, pues

dim(Link(f)) = dim(V(f)) + dim(S,) — 2n = dim(V(f)) — 1 =2n — 3.

Por el lema a partir de un cierto radio € > 0 la hipersuperficie V(f) es transversa a
la esfera S.. Con esta hipotesis, el lema [£.1.2] nos permite concluir que el fibrado normal del
Link(f,0) = SNV (f) en S¢ es trivial, y nos da la estructura de producto de un entorno tubular
f~Y(Ds) N'Se del Link(f,0). Por tanto, la fibracién de Milnor ¢ = ﬁ cumple la propiedad b)
tomando U = f~1(Ds) N'S.. O
Con el desarrollo que hemos elaborado, también es sencillo comprobar que las fibras de Milnor
se compactifican afiadiéndoles el link. Esta claro que Fp C Fp U Link(f,0). El lema nos da
el otro contenido en la interseccién con el U que explicitdbamos antes.

4.3. Homologia para orden menor que n — 1

Sea (V(f),0) el germen de una hipersuperficie con una singularidad aislada en el origen. Sea
€ > 0 un radio de Milnor para dicho germen. En esta seccion, el objetivo pricipal es probar el
siguiente resultado.

Proposicion 4.3.1. La fibra de Milnor Fy del teorema tiene la homologia de un punto
para ordenes menores a n — 1.

Demostracion. Se debe comprobar que la fibra tiene por grupos de homologia Hy(Fy) = Z y el
resto triviales hasta H,_o(Fy) (inclusive). Si tomamos los grupos de homologia reducidos, basta
con comprobar que todos estos hasta el de orden n—2 son triviales. Para hacer esto, aplicaremos
el siguiente resultado que es un teorema importante de topologia algebraica.
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Teorema 4.3.1 (de dualidad de Alexander). Si K es un subespacio propio de S"™ compacto,
localmente contractible y no vacio, entonces se tiene que los grupos de homologia reducidos
H;(S™ — K) son isomorfos a los grupos de cohomologia H"~*~Y(K) para cada orden i.

Observamos que sobre Fy podemos aplicar el teorema de dualidad de Alexander, pues tenemos
que en efecto es un conjunto contenido en la esfera S¢ de dimensién 2n — 1 compacto, no vacio,
y localmente contratible. Esto tultimo se debe a que es una variedad diferenciable, localmente
difeomorfa a un cierto R™, que es contractil. A partir de esto tenemos que los grupos de homologia
reducidos H;(S. — Fy) son isomorfos a los grupos de cohomologia H2("~1)~%(F,). Estos altimos
son triviales para valores de i tales que 2(n — 1) —¢ > n — 1 (es decir cuando i < n — 1) al
tener esta fibra el tipo de homotopia de un CW-complejo de dimension n — 1. Asi, los grupos de
homologia reducida de S, — Fy son triviales para érdenes menores que n — 1.

Finalmente, comprobamos que S, — Fy tiene el mismo tipo de homotopia que la fibra Fy. Esto se
debe a que dicho complementario es S, — (Fp U Link(f,0)), que esté fibrado localmente sobre el
espacio S! — {e?} que es contractil. Asi, la fibracién es trivial y se tiene un difeomorfismo entre
Se — Fp v (S* — {e?}) x Fy. Como este tltimo espacio tiene el tipo de homotopia de Fy (el otro
factor del producto se contrae a un punto) se tiene la equivalencia homotopica que buscdbamos.
Con esto concluimos que S, — Fy tiene el mismo tipo de homotopia que la fibra Fy. Asi, sus
grupos de homologia son isomorfos, y tenemos lo que queriamos. ]

Como deciamos anteriormente, el bouquet de esferas de dimensiéon n — 1 también verifica que su
homologia para 6rdenes menores que n — 1 es la del punto. En efecto, si denotamos por

N

Ver

i=1

al bouquet de IV esferas de dimensién n — 1, entonces se tiene que sus grupos de homologia con
coeficientes en Z son:

N Z sik =0,
H;, (\/S;H) ={ ®NZ sik=n-—1,
i=1 0 sik#0,n—1.

Estos grupos se calculan utilizando sucesiones de Mayer-Vietoris.

4.4. Puntos criticos no degenerados o singularidades de Morse

Un procedimiento para estudiar singularidades consiste en deformarlas a otras mas sencillas. El
prototipo de punto singular més sencillo es el dado por un punto critico no degenerado. Para
funciones complejas, este se define como sigue.

Definicién 4.4.1. Dada f : U — C con U C C" un conjunto abierto. Un punto zg € U es un
punto critico no degenerado de f si y solo si es un punto critico tal que la hessiana de f en zg
es no degenerada.

Ademas, el lema de Morse que veiamos con anterioridad (lema , también se puede enunciar
para el caso complejo. Sin embargo, en esta nueva formulacién hay un cambio significativo. Este
se encuentra relacionado con el hecho de que en el caso complejo no tiene sentido hablar de
indice de un punto critico no degenerado, al no tener tampoco sentido el concepto de signatura
de una forma bilineal.
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Lema 4.4.1 (de Morse para funciones complejas). Si zg es un punto critico no degenerado de
una funcion diferenciable f: U C C" — C, entonces existe un difeomorfismo local ¢ : (C™,0) —
(C",0), tal que

f © 90(217 ...,Zn) = f(ZQ) + sz
=1

En particular, con esto se ve que los puntos criticos no degenerados son aislados.

Aplicando este resultado al estudio que estamos realizando, obetenemos una consecuencia im-
portante. Supongamos que tenemos el germen de una hipersuperficie (V' (f),0) con f una funcion
holomorfa que cumple f(0) = 0, que tiene un punto critico no degenerado en el origen. Se cumple
lo siguiente.

Teorema 4.4.1. El tipo de homotopia de la fibra de Milnor en el tubo definida en[2.5.1] en torno
a un punto critico no degenerado es el de una esfera de dimension n — 1.

Demostracion. Por el lema[f.4.T|podemos afirmar que para un entorno suficientemente proximo
al origen, por ejemplo, una bola de Milnor B, con radio € > 0 suficientemente pequeno, existe
un cambio de coordenadas ¢ definido en dicho entorno tal que

fo Qb Ry eees 2 ZZ 21,...,zn).

Asi, las fibras lisas de la funcién f restringida a dicha bola son difeomorfas al espacio:
Vi=g ' (s)NBe= ¢ H(f 1) NBe = {2 € B : 27 + ... + 22 = s},

con s # 0, pues el 0 es valor critico. Notese que estos espacios, para |s| = § suficientemente
pequeno son las fibras de Milnor en el tubo (ver teorema [2.5.1)). Como sabemos que todas estas
fibras son difeomorfas entre si, basta con que nos fijemos en la fibra con s = J real.

Dividiendo cada coordenada z; en sus componentes real e imaginaria, se tiene que para cada
punto (z1, ..., 2,) € Vs:

sz—Zak—i—ibk)?:Z( ) +azzakbk_5;»z =0 Y b =0,
k=1 k=1

k=1

Y ademés, como Vi C B, se tiene
n

> (ap+b;) <e

k=1

El espacio definido por estas ecuaciones es difeomorfo al fibrado tangente de la esfera de dimen-
sion n — 1: TS?~ 1. Ello se debe a que si fijamos por ejemplo el vector de partes imaginarias dado
por (bi,...,b,) € R™, combinando las ecuaciones con las sumas de cuadrados, tenemos que debe

cumplir
1
E b < =
< 2 —6)

luego (by, ..., by) esta en un disco de dlmensmn n: D", El vector de partes reales (ay, ...,a,) € R"
que le corresponde debe pertenecer al complemento ortogonal a este vector, que es un espacio
isomorfo a R™. Ademés, por la igualdad de la suma de cuadrados, despejando la resta en las

componentes b?, encontramos que (aq, ...,a,) debera estar sobre la esfera de dimension n — 1.
Por tanto: (21, ..., 2,) € S*~! x D", siendo este espacio difeomorfo a TS"~!. El fibrado tangente
TS™ ! tiene el tipo de homotopia de la esfera S*~!, al ser el disco contractible. O
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Con esto, tenemos totalmente identificado el tipo de homotopia de las fibras en el tubo para el
caso de una singularidad aislada no degenerada: es el de la esfera de dimensién n — 1. Obsérvese
que esto es, en particular, un bouquet de esferas con una tnica esfera. Sin embargo, una funcién
f cualquiera no tiene por qué tener un punto critico no degenerado en la singularidad que
estemos estudiando. Lo que haremos por tanto, serd llevar una funciéon general a otra cuyos
puntos criticos si sean no degenerados: su morsificacion.

4.5. Existencia de morsificaciones

Comenzamos introduciendo el concepto de morsificacion. Sea f : (C",0) — (C,0) el germen de
una funcién analitica con representante f : B — C definido al menos en la bola de Milnor B,
que cumple f(0) = 0.

Definicién 4.5.1. Una morsificacion de f es una deformacion de dicha funcién, es decir, una
familia de aplicaciones analiticas f) inducida por una aplicacion diferenciable F' : B, x [0,1] — C
de manera que f\(z) := F(z,\) v fo = f, que cumple que f\|p, tiene una cantidad finita de
puntos criticos y son todos no degenerados para todo A € (0, \g], para un cierto A\g > 0.

Para el caso en que tengamos una singularidad aislada en 0, podemos asegurar que existe una
morsificacion con una forma concreta de la funcién que define la hipersuperficie. Para verlo,
necesitamos conocer el siguiente teorema.

Teorema 4.5.1 (de Sard). Dada f : R" — R™ una funcion diferenciable, el conjunto de sus
valores criticos es de medida 0. Ademds, si f : C™ — C™ es analitica compleja y propia, entonces
el conjunto de valores criticos es un subconjunto analitico.

Teorema 4.5.2. Si (V(f),0) tiene una singularidad aislada en O entonces existe una morsi-
ficacion de f de la forma fy = f — XMai1z1 + ... + anzy,) para cierto vector (ay,...,a,) € C™.
Ademds, se puede elegir el vector (ai,...,an) de manera que los puntos criticos de f\ tengan
valores criticos distintos para cada .

Demostracion. Aqui no probaremos la segunda parte de este teorema, por la cual se asegura
que la morsificacién se puede escoger con sus valores criticos distintos dos a dos. La prueba de
este resultado se puede consultar en [5]. Veamos por tanto que los puntos criticos de la funcion
f del enunciado son todos no degenerados y constituyen un conjunto finito. Denotamos por
9a(2) = a121 + ... + anzn.

Dada fy := f — Aga, sus puntos criticos son los puntos que pertenecen a df ~!(\a). Ademas,
x € df 1(Aa) serd un punto critico no degenerado de fy si |Hessy(x)| # 0 donde Hessf(z) es la
matriz Hessiana de f en z.

Como Hessy es la jacobiana de df, tenemos que f — \g, tiene solo puntos criticos no degenerados
si todos los puntos de df ~*(Aa) son puntos regulares de df. Es decir: si Aa es un valor regular
de df. Como el conjunto de valores criticos A de df : C™ — C™ es, por el Teorema de Sard, un
conjunto analitico de codimensién positiva, podemos tomar un segmento en C™ con origen en
0 que no toque a A — {0}. Sea a el otro extremo del segmento. Entonces para todo A € (0, 1]
tenemos que f) = f — Ag, solo tiene puntos criticos no degenerados.

Ademas, cada funcién f) tiene una cantidad finita de puntos criticos no degenerados. Ello se
debe a que los puntos criticos no degenerados son aislados, la prueba de esto es analoga a la del
caso real. Asi, forman un conjunto discreto en el compacto dado por B, que debe ser finito [

Concluimos la seccion con la siguiente observacion. En realidad, para la morsificacion que hemos
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encontrado, podriamos haber considerado A € Dy, para Ao > 0 suficientemente pequeno. Asi, el
pardmetro variarfa en los complejos y no en el intervalo que vefamos, lo cual resultara ttil en la
seccion siguiente.

4.6. Tipo de homotopia de las fibras

Habiendo desarrollado todas las herramientas necesarias para ello, pasamos a construir la inclu-
sién que hemos comentado. Queremos comprobar que existe un modelo homotopico al bouquet
de esferas de dimensién n — 1, es decir, un espacio con el mismo tipo de homotopia que este
bouquet, contenido en la fibra de Milnor.

Sea f: (C™ 0) — (C,0) el germen de una funcién analitica. Supongamos que tiene una singula-
ridad aislada en en el origen. Tomamos la morsificacion que nos da el teorema[4.5.2] en la forma
= f+ Ag. Consideramos la funciéon

F: B, x ]D))\O — B x D)\O, F(Z,)\) = (F(Z,)\),A)

con F(z,\) = fa(2). El conjunto de sus puntos criticos es la union de los puntos criticos de la
familia fy con A € D,,. En efecto, si consideramos la diferencial de F', obtenemos la siguiente

matriz jacobiana
dfy *
0 1)°

Asi, los menores de esta matriz que se anulen y contengan elementos de la dltima fila, desarro-
llando el determinante por dicha fila, conllevan que se anule la parte del menor contenida en

dfy.

Lema 4.6.1. Sobre esta morsificacion, podemos afirmar que existen € >0, § > 0 y Ag > 0 tales
que se verifican las siguientes propiedades.

1. La fibra f;l(s) es transversal a la esfera S¢ para todo s € Ds y para todo A € Dy, .
2. Los valores criticos de fy estdn en el interior del disco Ds para todo X € Dy, .

3. La fibra de Milnor de f en el tubo dada por f~'(s) N B, es difeomorfa a f;l(s) N B, para
todo A € Dy, y todo s € ODj.

Demostraciéon. Vamos viendo las propiedades una a una.

1. Para comprobar la transversalidad, procedemos como sigue. Sabemos que para F(z,0) =
(f(2),0) existen un € > 0 y un § > 0 tales que para cada t € Ds la fibra f~1(¢) inter-
seca transversalmente a la esfera de Milnor S.. Sea p € f~1(IDs) N'Sc un punto en dicha
interseccion. La transversalidad en dicho punto es una propiedad abierta, luego existe un
entorno abierto U, en Fﬁl(Dg x Dy,) tal que si F(z,\) = (s,\) para (z,A) € Uy, enton-
ces f, '(s) interseca transversalmente a S en (z,\). Asi F es submersion, luego F(U,)
es abierto. Tomamos 6, > 0y A, > 0 tales que Ds, x Dy, C F(Up), por lo que f)\_l(s)
también es transversal a S¢ en los puntos de (s, A) € Ds, x D). Considerando los entornos
correspondientes a los U, que se obtienen restringiendo al espacio f~(Ds) NS (tomando
A = 0), tenemos un recubrimiento por abiertos del mismo. Como es un compacto, basta
con quedarse con una cantidad finita de estos. Tomando A\ el minimo de entre los A, y el
0 minimo entre los d,, que correspondan a los entornos seleccionados, se tiene el resultado.

2. Sabemos que existe el § > 0 que cumple que
fly-1(om5)nE.

41



es una submersién. Ser submersiéon también es una propiedad abierta. Como antes, para
cada punto del tubo p € f~1(0Ds) N B, consideramos el entorno U, de

F ' (0Ds x Dy,)

para el que se mantiene la propiedad: F es submersioén en dicho entorno. Consideramos los
Ap > 0y 0, > 0 como antes. Nos quedamos con una cantidad finita por la compacidad del
tubo y tomamos los minimos, redefiniendo si es necesario los Ag > 0 y § > 0 anteriores.

3. Finalmente, esta propiedad se obtiene a partir del teorema de Ehresmann y de las
propiedades 1 y 2. Se considera la restriccion:

F ’f‘l(aﬂ)éxmo)'

Se observa que el espacio f_l(é?ID)(; x Dy, ) es una variedad con borde dado por
F1(0Ds x Dy,) N (Se x Dy, ).

Como sabemos que los valores criticos de f estan en el interior de Ds para todo A € Dy,
y por la condicién de transversalidad sobre la esfera se tiene que F es submersion en el
interior del espacio. Que F sea submersién en el borde de la variedad también nos lo da la
propiedad 1 de transversalidad. Ademas, se tiene que es una funcién propia por ser continua
en un dominio compacto. Por el teorema de Ehresmann es una fibraciéon localmente trivial,
y esto prueba lo que buscabamos.

Con estas preparaciones realizadas, pasamos a ver cémo es el modelo homotépico del bouquet
de esferas que vamos a incluir en la fibra de Milnor. La situacion que vamos a describir a
continuaciéon queda reflejada en la figura Fijamos A < A\g. Supongamos que la morsificacion
tiene N puntos criticos no degenerados para f) con A € D} . Llamamos p; con ¢ = 1,...,N
a dichos puntos criticos, y v; con i = 1,..., N a los valores criticos que les corresponden, que
podemos suponer por el teorema que son distintos dos a dos y estan contenidos en Djy.
Para cada uno de estos puntos criticos, podemos considerar su bola de Milnor centrada en p;
que denotamos por B, (p;) C B¢ y el disco centrado en v; que le corresponde Dy, (v;) C Ds para
establecer la fibracion de Milnor en el tubo en torno a p; segiun teorema [2.5.1 Como los p;
son puntos criticos no degenerados, el tipo de homotopia de las fibras fy 1(5@') N B, para cada
s; € D5, es el de una esfera de dimension n — 1.

En el disco Dy, escogemos un valor regular en la frontera s € dD;. Trazamos caminos disjuntos
desde dicho punto s a cada uno de los valores regulares v; y que corten a 9Ds,(v;) una sola vez.
Llamamos s; al punto que se encuentra en dicha intersecciéon. Asi, dividimos los caminos en dos
partes: la primera, a la que denominamos «;, que va de s a s; paracada¢ = 1,..., N y la segunda,
a la que llamamos §; que va de s; al valor critico v; para cada ¢ = 1, ..., N. Definimos:

N
F:UOCZ', fz
i=1

C=

(Ozi U ,31)

i=1

Se cumple que f) es una fibracion localmente trivial restringida a fy 1(F) sobre I'. Para verlo, se
aplica el teorema de Ehresmann como ya hemos hecho otras veces, donde la submersién sobre
la frontera se tiene gracias a las hipotesis de tranversalidad. Como I' es un espacio contractible,
se tiene que de hecho, la fibracion es trivial, luego el espacio tiene la estructura del siguiente
producto

SN 2 (f7N(s) NB) < T
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Figura 4.1: Diagrama del modelo homotopico al bouquet de esferas contenido en la fibra de
Milnor.

Denominamos al modelo homotépico que nos interesa por Y. Definimos este como sigue. Deno-
minamos A; a un espacio homotopicamente equivalente a S*~! con A; C N 1(si) N B,,, siendo
la inclusion una equivalencia hométopica. Fijamos g € fy° 1(3[@5) N Be. Sean ¢; levantamientos
de los caminos «a; en la bola B, que cumplen «; = f) o @;. Podemos asumir, por la estructura
de producto que acabamos de ver, que uno de los extremos de estos caminos estaré en g y el
otro estard sobre la fibra fy 1(81') N B, para cada camino con ¢ =1, ..., N. Con estos elementos,

definimos
N

Y = Ul(di UA;) C fHD).

Este espacio tiene el tipo de homotopia de un bouquet de N esferas de dimensién n — 1 por
construccion. Veamos por ultimo que esti contenido en un espacio con tipo de homotopia el de
la fibra f; '(s) N B..

Esto se debe a que, por ser I' contractible, se verifica que (f; L(s)NB,) x T tiene el mismo tipo
de homotopia que la fibra fy 1(5) N B.. Por tanto hemos construido Y un espacio con el tipo de
homotopia del bouquet de N esferas de dimensiéon n — 1 contenido en f~!(I'), espacio que tiene
el tipo de homotopfa de la fibra f,° 1(s) N B, y esto concluye la prueba que buscabamos.

Como ya hemos comentado, se puede demostrar que esta inclusiéon que acabamos de encontrar
es de hecho una equivalencia homotépica. Para ello, se comprueba que la inclusiéon induce un
isomorfismo entre los grupos de homologia de Y y de la fibra fy 1(s) N B.. Para ver que esto
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conlleva la equivalencia homotdpica, se hace uso de los dos siguientes teoremas fundamentales
de topologia algebraica.

Teorema 4.6.1 (de Whitehead). Sean X eY dos CW-complejos conexos. Si una funcion con-
tinua f : X =Y induce isomorfismos fy : my(X) — mo(Y') entre todos sus grupos de homotopia,
entonces [ es una equivalencia homotdpica.

Teorema 4.6.2 (de Hurewicz). Si un espacio X es (n — 1)-conero con n > 2, entonces los
grupos de homologia reducida H;(X) son 0 para i <n y m,(X) es isomorfo a H,(X).

Ambos teoremas se combinan en el siguiente corolario que es el que permite concluir el resultado.

Corolario 4.6.2.1. Una aplicacion f : X — Y entre CW-complejos simplemente conexos que
induce isomorfismos entre sus grupos de homologia fi : Hp(X) — Hp(Y') para todo orden n es
una equivalencia homotdpica.

Las pruebas y enunciados de estos resultados pueden consultarse en [7]. A la vista de estos, hay
que comprobar que los espacios son simplemente conexos, y al darnos la inclusién el isomor-
fismo entre de homologia de la fibra y el bouquet, se concluye que constituye una equivalencia
homotépica. Esto nos conduce a un resultado importante.

Lema 4.6.2. El nimero N de puntos criticos no degenerados que aparecen al tomar una morsifi-
cacion de una funcion holomorfa f : U — C con U C C" abierto no depende de la morsificacion,
y es siempre el mismo.

Esto se debe a que acabamos de ver que el tipo de homotopia de las fibras es el del bouquet
de N esferas de dimensiéon n — 1, y el tipo de homotopia de estas solo depende del germen
f:(C",0) — (C,0) que nos de la singularidad. En vista de este resultado, se tiene una tltima
definicion.

Definicion 4.6.1. Se define el nimero de Milnor del germen de una funcién analitica f :
(C™,0) — (C,0), denotado por u(f,0), como el nimero de puntos criticos no degenerados que
aparecen en una morsificacion cualquiera de f, en el sentido de la definicion [4.5.1
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Apéndice A

Algunas nociones basicas de conjuntos
analiticos complejos

El objeto de estudio del presente trabajo son las singularidades de conjuntos analiticos, es decir,
conjuntos definidos por los ceros de funciones holomorfas. En particular, nos interesa saber
cémo obtener informacién topoldgica local de las mismas utilizando herramientas geométricas y
algebraicas mas accesibles.

A.1. Funciones holomorfas y el anillo de series convergentes

En primer lugar, es pertinente realizar algunos comentarios sobre como se materializan algunas
nociones relacionadas con funciones holomorfas en varias variables, con las cuales trabajaremos
constantemente a lo largo de este texto. En particular, nos interesa ver como podemos aplicar
argumentos algebraicos para trabajar con estas funciones, los cuales resultaran de gran utilidad
en las secciones siguientes.

Es bien conocido que si tenemos una funcion f : U — C, donde U C C™ es un conjunto abierto, es
equivalente decir que f es una funcién holomorfa a que f es una funcion analitica. Las funciones
analiticas en U son aquellas para las que, dado un punto x cualquiera de U, existe un entorno
V C U de x y una serie de potencias, la cual converge a f en V. Lo interesante de esta discusion
es que si consideramos p € C" fijo, resulta que las series de potencias que convergen en un
entorno de p (el cual puede depender de la serie) forman un anillo, que se denota por Oy ,.
En el caso particular de las series de potencias convergentes en un entorno del 0, denotamos
a este anillo por C{z}, C{z1,...,x,} o simplemente O,,. No olvidemos que siempre podemos
llevar un punto p € C™ al 0 via un cambio de coordenadas lineal. Como ya hemos anunciado, en
este trabajo estudiaremos el comportamiento de funciones holomorfas en entornos de un punto
concreto, por lo que podremos trabajar con éstas como elementos del anillo anterior, y aplicar
argumentos relacionados con las propiedades de dicho anillo.

Por ultimo, merece la pena senialar algunas de las propiedades ttiles que verifica el anillo O,,. Para
una exposicion detallada de las mismas se puede consultar el capitulo 3 de [§], aqui simplemente
enunciaremos las dos siguientes. La primera, que este constituye un anillo noetheriano, es decir,
en el cual todos sus ideales son finitamente generados. Ademas, este es también un dominio de
factorizacion inica, luego los elementos irreducibles del anillo son precisamente los primos, y la
descomposicién en factores irreducibles anterior es tnica salvo multiplicacién por unidades.

45



A.2. Conjuntos analiticos

Habiendo revisado los conceptos de la secciéon anterior, podemos pasar a definir los espacios que
nos interesan: los conjuntos analiticos.

Definicion A.2.1.

1. Un subconjunto X C C" se dice localmente analitico si para cada punto p € X existe
un entorno abierto U, C C" de p y un conjunto finito de funciones holomorfas fi, ..., fs
definidas en U, de manera que

XNU,={2€U,: fi(2) = ... = fs(z) = 0}.

A un conjunto de este tipo lo denominaremos V' (fi, ..., fn)-

2. Sea un U un conjunto abierto de C". Un subconjunto X C U se denomina subconjunto
analitico de U si X es localmente analitico, y cerrado en U.

3. Si directamente tomamos X C C” localmente analitico y cerrado, podemos denominarlo
simplemente conjunto analitico. En este caso podemos asegurar que para cada p € C"
existe un entorno suyo U, de modo que X N U, se puede definir como los ceros de un
conjunto finito de funciones holomorfas definidas en U,,. Por ser X cerrado, en caso de que
p ¢ X, se puede escoger dicho entorno de modo que la interseccion con X sea vacia, y por
ello podemos asegurar lo anterior.

El concepto de funciéon holomorfa se extiende de forma natural para definirlas en estos conjuntos.

Definicion A.2.2. Sea X un subconjunto analitico de U, con U C C" abierto. Una funcién
f X — C se dice que es holomorfa en X si para cada z € X existe un entorno abierto V' de x
en C™" tal que flynx sea la restriccion de una funciéon holomorfa en V.

Existe un tipo concreto de conjuntos analiticos en los que la topologia local en torno a un punto
cualquiera es especialmente sencilla. Veamos cémo definirlos y cuél es esta topologia.

Definiciéon A.2.3.

1. Sean fi,..., fn un conjunto de funciones holomorfas en un abierto U C C". Sea p € U y
supongamos que f1(p) = ... = f,(p) = 0. Entonces, se denomina a {fi, ..., fn} conjunto de
funciones coordenadas en p si cumplen:

i (2 0.

2. Un subespacio X C C" es una variedad compleja de C™ si para cada p € X existen un
entorno abierto de p, U, C C", y un conjunto de funciones coordenadas fi, ..., f, de p de
manera que, para algin m < n

XNU,={2€U: fi(z) =... = fm(z) =0}.

Con estas definiones observamos que una variedad compleja como la anterior es un subespacio
de C™ que es localmente como C™, es decir, tal que existe un biholomorfismo local entre ambos
espacios. En particular, la topologia en un entorno de cualquier punto es la de dicho C™. Estos
espacios son variedades diferenciales, siendo la condicién de holomorfia méas restrictiva que la
diferenciabilidad.
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A.3. Gérmenes de espacios analiticos y funciones analiticas

En esta tltima observacién, por primera vez nos hemos acercado al verdadero objetivo de este
trabajo: conseguir describir topolégicamente las inmediaciones de un punto en un conjunto
analitico.

Definicion A.3.1. Dado X un espacio topologico y p € X. Se define una relacién de equivalencia
entre subespacios de X que contengan a p de la siguiente manera: dos de estos, denotados por
Ay B, estan relacionados si y solo si existe un entorno U de p tal que ANU = BNU.

A la clase de equivalencia de un conjunto A en p se le denomina germen de A en p, siendo A un
representante de dicha clase. Se denota a dicho germen por (A, p).

En efecto, se comprueba facilmente que dicha relacion es de equivalencia. Ademas, dados los
gérmenes (X, x), (Y,z) y (Z, x) de un espacio topolégico, podemos definir la siguientes relaciones
entre ellos.

» En primer lugar, decimos (X, z) C (Y, x) si existen representantes X de (X, z) e Y de (Y, )
de modo que X C Y. Se puede comprobar que se tiene la igualdad entre los gérmenes si
se dan los dos contenidos, como es costumbre.

» Sise cumple (X,z) C (Y,z)y (Z,z) C (Y, z), se define (X, x) N (Z,x) como el germen de
X N Z en z para cada par de representes X y Z de (X, z) y (Z,x) respectivamente.

» De modo anélogo, se define la union de gérmenes como los anteriores (X, z) U (Z, x).

Estas nociones nos interesan aplicadas al caso de los espacios localmente analiticos, es decir, los
espacios que localmente vienen dados por los ceros de ciertas funciones holomorfas.

Definiciéon A.3.2. Un germen de un espacio analitico (X, p) es un germen en p de un espacio
analitico X de C™.

Por ejemplo, veamos el caso de una hipersuperficie. Sean p € C" y f € O, ), consideremos un
entorno abierto U de p en el cual f converja, y con este el subconjunto analitico de U dado por
V(f):={z€U: f(z) = 0}. Se define asi el germen de la hipersuperficie analitica definida por
f al germen dado por (V(f),p).

Consideremos un ideal I = (fi, ..., fs) C Opp generado por las funciones holomorfas indicadas
en el paréntesis, se define el germen del espacio analitico dado por los ceros de las funciones del

ideal (V(I),p) como

S

WV (D),p) = (V) p).

i=1

Se comprueba facilmente que esta definicion es independiente de la eleccion de generadores de
1.

Ademas, también podemos razonar a la inversa e identificar el ideal cuyas funciones nos permi-
ten definir un conjunto analitico dado en el sentido anterior. Dado (X, p) un germen de dicho
conjunto en p, se define el ideal de las funciones holomorfas que se anulan en él

I(X,p) = {f € On,P : (X,p) C (V(f)7p)}

Noétese que cualquier ideal del anillo O, es finitamente generado, y que el conjunto X es
independiente del conjunto de generadores que se escojan para representarlo mediante sus ceros.
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Finalmente, el Teorema de los Ceros de Hilbert o Nullstellensatz nos asegura que, tomando las
notaciones de los parrafos anteriores,

Z(V(I),p) = V1,

es decir, que el ideal de las funciones holomorfas que se anulan en el conjunto analitico dado por
los ceros de las funciones en I es precisamente el radical de I.

Finalmente, definamos un tipo concreto e interesante de gérmenes de conjuntos analiticos.

Definiciéon A.3.3. Sea (X, z) el germen de un espacio analitico. Entonces, se dice que es irre-
ducible si al expresar (X,z) = (X1,2) U (X2, ), se tiene que o bien (X,z) = (X;,z) o bien
(X7 ZL‘) = (X27x)'

Para cada germen de un espacio analitico se tiene una descomposicién Gnica salvo permutaciones
del tipo:
(X,z) = (X1,2)U...U(Xy, )

con (X;,z) gérmenes irreducibles tales que (X;,x) ¢ (Xj,x) si i # j. Estos gérmenes (X;, x) se
denominan componentes irreducibles de (X, x).

Por otro lado, se pueden aplicar la nocién de germen a las funciones entre conjuntos.

Definiciéon A.3.4. Sean (X, z) e (Y, y) dos gérmenes de espacios topologicos. Se define el germen
de una funcion continua f : (X, z) — (Y,y) como la clase de equivalencia de funciones f : U —
W con f(x) =y y donde U y W son representantes de (X,z) e (Y,y) respectivamente. Dos
aplicaciones de este tipo f1 : Uy — Wy f: Us — W se dicen equivalentes si coinciden en un
entorno abierto de x contenido en Uy N Us.

Sabiendo esto, podemos considerar el caso particular de las funciones por las que nos estamos
interesando: las funciones analiticas.

Definicion A.3.5. Sea (X,z) C (C",z) un germen de un conjunto analitico. Un germen de
una funcion analitica f : (X,z) — (C,y) es un germen de una aplicacion f : (X,z) — (C,y)
que cumple que algiin representante suyo es la restricciéon en X de una funcién analitica en un
entorno abierto de z € C".

Se puede ver que los gérmenes de funciones analiticas sobre (X, z) forman un &lgebra sobre C,
denotada por Ox . Esta algebra se denomina anillo de las funciones analiticas en (X, x). Se
tiene que si (X, x) C (C™, x) es el germen de un conjunto analitico e Z(X, z) el ideal que hemos
definido antes de las funciones que se anulan en X, entonces se puede ver Ox , como el cociente

siguiente:

On,x
Oxe = 70X, )

Si (X, z) es el germen de una variedad compleja en X (ver definicion [A.2.3]), entonces, se puede
demostrar que existe un k € {1,...,n} tal que Ox, = C{x1, ..., x%}.

A.4. Puntos singulares y puntos criticos

Pasamos a definir uno de los conceptos clave de este trabajo: los puntos singulares de un conjunto
analitico. Como comentamos anteriormente, la topologia local en torno a un punto de una
subvariedad compleja es bien conocida (ver definicion : es simplemente la de un cierto C*
contenido en C". Ello motiva la siguiente distincion.
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Definicién A.4.1.

= Dado U € C” un conjunto abierto y X C U un subconjunto analitico. Un punto p € X se
denomina punto regular o liso si existe un entorno abierto V' de p en C" de manera que
X NV sea una subvariedad compleja, esto es, la imagen via una aplicacion biholomorfa de
un abierto de un cierto C*.

= Sipno es un punto regular, decimos que es un punto singular o singularidad. Al conjunto
de puntos singulares de X lo denotaremos por Sing(X).

Esta definicién apela a la existencia de una funcién biholomorfa que conecte un entorno del
conjunto analitico con un abierto de C*. Como se puede leer en el capitulo 2 de [I1], un conjunto
analitico nunca es una variedad diferenciable en un entorno de un punto. Sin embargo, si podria
ser una variedad topologica como en el caso de curvas irreducibles (ver seccion 1.4).

Es util tener una forma més operativa de identificar los puntos singulares de un conjunto ana-
litico. Para los ejemplos con los que trabajaremos aqui, los puntos singulares de los conjuntos
analiticos se corresponderin con los puntos criticos de las funciones holomorfas que utilizaremos
para definirlos.

Fijemos el concepto de punto critico de una aplicaciéon entre variedades. Sea una aplicacién
diferenciable f : M — N entre dos variedades diferenciables M y N. La diferencial de f en cada
punto p € M define una aplicacién lineal entre los tangentes:

dpf : TpM — Tf(p)N,
cuya expresion viene dada por la jacobiana de f evaluada en el punto p. A partir de esta se
establecen las siguientes definiciones.
Definicion A.4.2.

= Un punto p € M se denomina punto critico de f si y solo si se cumple:
rank(d, f) < min(dim M, dim N).

Al conjunto de los puntos criticos de f lo denotamos Y.

» Si consideramos una aplicaciéon f : C" — C™ holomorfa, se tiene que X constituye un
conjunto analitico. Ello se debe a que se puede definir por los ceros de las funciones que
definen todos los menores de orden min(dim M, dim N) de la jacobiana.

» U punto ¢ € N se denomina valor critico de f si f~'(g) contiene un punto critico de f.
Al conjunto de valores criticos, es decir a f(X¢), se le denota comtnmente Crit(f).

Supongamos que tenemos un conjunto analitico X definido por los ceros de un conjunto finito
de funciones holomorfas {fi, ..., fm}, las cuales estan definidas de un abierto U C C" en C.
Tomando f = (f1,..., fm) : U — C™, por el Teorema de la Funcion Implicita podemos concluir
que si p € X no es un punto critico de f, entonces en un entorno de dicho punto X es una
subvariedad compleja, y en particular diferenciable, luego dicho punto es regular en el sentido
que definfamos antes.

Ahora, para convertir esta implicacién en una equivalencia, se debe llevar algo de cuidado.
Vedmos a qué nos referimos para el caso de una hipersuperficie X = V(f), con f : U C C" — C
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una funcién holomorfa. Queremos identificar los puntos singulares de X con X N Xy para una
f como la anterior cuyos ceros definan a X. Nos encontramos con que considerandolos como
conjuntos V(f) = V(f?), luego también podriamos considerar f2 como la funcién que define
X. Sin embargo, cada punto de V(f?) es un punto critico de f2, luego en este caso, vemos
que el conjunto X2 es “demasiado grande”. Esto sucede asf siempre que haya factores repetidos
en la posible descomposicion en factores primos de f (recordemos que la podemos ver como
un elemento de O,, que es un dominio de factorizacion tnica). De esta manera, nos interesan
funciones analiticas tales que su descomposicién en factores primos f = ffl c oo fRmcumpla
que k; = 1 para cada i = 1, ..., m. En este caso, decimos que f es reducida, y podemos identificar
los puntos singulares de V(f) con V(f) N Xy.

Para concluir la seccion, merece la pena comentar que con estas definiciones, si estamos conside-
rando un espacio analitico en el cual todos sus puntos son lisos tiene sentido hablar del concepto
de dimension de la variedad compleja. Por ejemplo, tomando la dimensién topoldgica, esta se
corresponderia con la dimension del C* con respecto al cual el espacio es homeomorfo local-
mente. Ademés, esta dimension, como sucede para el caso real, es constante en las componentes
conexas del espacio, que se corresponden con las componentes irreducibles que definfamos antes.
En el caso general en que X es un conjunto analitico, se puede demostrar que X — Sing(X) es
denso. De este modo, para cada componente irreducible X; se tiene que X; — Sing(X;) es denso
y conexo, luego se puede definir su dimensién correctamente.
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