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Abstract

The study of singularities is a branch of mathematics where ideas from different areas, such as
algebra, geometry or topology, come together. In particular, in this work, we intend to study the
local topology around singular points of complex hypersurfaces, following the famous approach
of Milnor’s work [11]. We will work with complex hypersurfaces defined by the zero set of a given
holomorphic function f : U ⊂ Cn → C as follows

V (f) := {z ∈ Cn : f(z) = 0}.

We will assume that f(0) = 0 and that f has a critical point at the origin 0, so that the analytic
set f−1(0) has a singular point at 0.

To start, we will study in chapter 1 the local conical structure of V (f). Afterwards, in chapter
2, we will prove the famous Milnor’s Fibration Theorem. This theorem states that f

|f | defines
a locally trivial fibration in a sufficiently small sphere around the critical point without the set
V (f). We will also give a very useful alternative version of this theorem. This second formulation
will allow us to study the level sets of the function f close to the critical level set given by
V (f) = f−1(0), in sufficiently close neighbourhoods of the critical point. In chapter 3 we will
describe the topology of the fibers of the Milnor’s Fibration and the topology of the intersection
of V (f) and the sphere, called the link of the singularity. Finally, in chapter 4, we study the case
of an isolated singularity. We find several stronger versions of the facts that we will have already
proved. Moreover, we will be able to identify the homotopy type of the fibers in that case as the
homotopy type of a bouquet of spheres.
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Introducción

El estudio de las singularidades de conjuntos definidos por los ceros de funciones holomorfas
es un área de las matemáticas en la que se unen numerosas herramientas e ideas de diferentes
disciplinas: geometría, topología o álgebra entre otras. El caso de hipersuperficies definidas por
los ceros de una sola función, fue estudiado por John Milnor en [11], trabajo en el que probó el
famoso teorema de fibración de Milnor. Este constituye uno de los enunciados fundamentales de
la teoría, y será el resultado en torno al que gire el presente trabajo.

El objetivo de este texto, a grandes rasgos, consiste en estudiar la topología en entornos su-
ficientemente pequeños de un punto singular de una hipersuperficie compleja. En particular,
consideraremos una función analítica f : U → C definida en un abierto U ⊂ Cn que contiene
al origen, y supondremos que f(0) = 0 y que ∇f(0) = 0. Entonces 0 ∈ f−1(0) será un punto
singular de la hipersuperficie

V (f) := {z ∈ Cn : f(z) = 0},

y estudiaremos la topología en entornos suficientemente próximos a este punto. Veremos que, de
hecho, existe una bola Bε := {z ∈ Cn : ‖z‖ ≤ ε} tal que 0 es el único valor crítico de f |Bε . De este
modo, los conjuntos f−1(s) ∩ Bε serán conjuntos lisos para s 6= 0 en un entorno suficientemente
próximo al 0. Con todo esto, de manera más precisa, el objetivo será estudiar la topología de la
fibra singular f−1(0) ∩ Bε y de las fibras lisas f−1(s) ∩ Bε que hemos mencionado antes. Puesto
que estamos desarrollando un estudio local, se recurre con frecuencia a las nociones de germen de
la hipersuperficie en el origen (V (f), 0) y de germen de la función analítica f : (Cn, 0)→ (C, 0).
Estos conceptos se explican en el anexo.

Para abordar este estudio local, se estructura el trabajo como sigue. En el capítulo 1 comenzamos
estudiando el teorema de la estructura cónica. Este nos informa de que la forma en que la
hipersuperficie se embebe en el ambiente es siempre la misma para entornos suficientemente
pequeños. Además, nos dice que esta hipersuperficie es homeomorfa al cono sobre su intersección
con una esfera de radio suficientemente pequeño. De este modo, se encuentra que tiene el tipo
de homotopía de un punto, ya que el cono es contractible. A partir de este teorema, se define
el concepto de link del germen f : (Cn, 0)→ (C, 0), para el cual estudiaremos algunos ejemplos
interesantes, y el de bola y esfera de Milnor.

Posteriormente, en el capítulo 2 se introduce el teorema de la fibración de Milnor, que hemos co-
mentado antes. Este nos permite encontrar una fibración localmente trivial de la esfera de Milnor
menos V (f) en la circunferencia. Comenzaremos revisando algunos conceptos importantes para
la compresión del teorema. Después, demostraremos la versión original del mismo, presentada
por John Milnor en [11], para luego ver una versión alternativa de la misma que se utiliza mucho
en este contexto, y probar la equivalencia entre ambas fibraciones.

En el capítulo 3 estudiamos la topología de la fibra de Milnor y del link de la función cuyos ceros
definen la hipersuperficie. Para ello, es necesario introducir algunos conceptos fundamentales de
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teoría de Morse para funciones reales. Con esta teoría, se prueba que las fibras tienen el tipo de
homotopía de un CW-complejo de dimensión n− 1 y que el link resulta (n− 3)-conexo.

Finalmente, en el capítulo 4 se aplican los resultados obtenidos al caso de singularidades aisladas.
Esto supondrá añadir a las hipótesis que planteábamos antes que en un entorno U suficientemente
próximo al origen 0 se tiene la equivalencia ∇f(x) = 0, x ∈ U ⇔ x = 0. En este caso particular,
se pueden reforzar algunos de los resultados obtenidos, y deducir consecuencias interesantes sobre
cómo se comporta la fibración de Milnor. Veremos que esta induce una estructura de libro abierto
en la esfera de Milnor, y que las fibras tienen el tipo de homotoía de un bouquet de µ esferas
de dimensión n − 1. Para ello, se utilizarán herramientas relacionadas con las morsificaciones
complejas, concepto que se introduce y detalla en el capítulo.

Comentario a la bibliografía utilizada

Para articular el estudio que se acaba de describir, se ha seguido principalmente la referencia
que ya se ha mencionado [11], pues esta es una referencia clásica sobre el tema que recoge gran
parte de los resultados y demostraciones que vertebran el trabajo. Además, para comprender
los fundamentos del estudio local de la geometría analítica, que se exponen en el apéndice,
se consultó [8] que recoge un estudio pormenorizado de estos asuntos. Para estudiar la teoría
de Morse, que se utiliza de forma importante en el capítulo 3, se consultaron las referencias
[10], [14] y [12]. Finalmente, para el estudio que se desarrolla en el capítulo 4 con respecto al
tipo de homotopía de la fibra de Milnor se ha seguido el punto de vista expuesto en [1]. Esta
es una referencia también clásica sobre el estudio de singularidades, que utiliza herramientas
sobre monodromía que no se tratan en este trabajo. Sin embargo, las ideas expuestas en sus dos
primeros capítulos se pueden aprovechar para las últimas secciones del capítulo 4 mencionadas.
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Capítulo 1

La estructura cónica

En este capítulo, estudiaremos la topología local en torno a un punto de un conjunto analítico
cualquiera embebido en Cn. Probaremos que a partir de un cierto radio ε0 > 0 suficientemente
pequeño, el tipo topológico del par dado por la bola de radio ε ≤ ε0 centrada en dicho punto
y su intersección con el conjunto analítico es siempre el mismo. De hecho, veremos que está
determinado por cómo se incluye en la esfera dada por el borde de la bola la intersección
del conjunto analítico con dicha esfera. Aquí se demostrarán estas cuestiones para el caso de
singularidades aisladas. Sin embargo, este resultado se cumple también para lugares singulares no
aislado, y más en general, para conjuntos analíticos reales. La demostración para singularidades
no aisladas es más sutil que la que aquí presentaremos, y hace uso de estratificaciones de Whitney
(ver [3] y [9]), por lo que aquí solo la comentaremos, aunque en capítulos siguientes asumiremos
su validez.

1.1. El teorema de la estructura cónica

Sea V un conjunto analítico en Cn, es decir, un conjunto definido como

V := {x ∈ U : f1(x) = 0, ..., fm(x) = 0}

para un cierto abierto U ⊂ Cn y con fi para cada i = 1, ...,m una función holomorfa definida en
U (ver sección A.2 del apéndice para más información sobre este tipo de espacios). Sea p ∈ V
un punto de dicho conjunto. Denotamos la esfera y la bola cerrada de radio ε > 0 y centro p por
Sε := {z ∈ Cn : ‖z − p‖ = ε} y Bε := {z ∈ Cn : ‖z − p‖ ≤ ε}.

Teorema 1.1.1. Existe un ε > 0 suficientemente pequeño y una familia uniparamétrica de
difeomorfismos {ϕt : t ∈ (0, ε2]} que dependen de forma diferenciable del parámetro t de manera
que:

la función ϕε2 es la identidad,

cada función ϕt lleva el par (Sε,Sε ∩ V ) en (St, St ∩ V ), donde St es la esfera de radio
r2 = t centrada en p.

Este resultado tiene un corolario importante. Antes de enunciarlo, merece la pena recordar la
definición del cono sobre un espacio topológico X. Éste viene dado por el espacio cociente definido
por

C(X) :=
X × [0, 1]

X × {0}
,
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es decir, el espacio que resulta de colapsar un extremo del espacio X × [0, 1] a un punto.

Por ejemplo, el cono sobre Sε ∩ V se define como la unión de los segmentos que unen los puntos
de este espacio con p:

C(Sε ∩ V ) := {tx+ (1− t)p : t ∈ [0, 1], x ∈ Sε ∩ V }.

El cono sobre Sε se define de manera análoga y coincide con Bε. Con estas definiciones se tiene
el siguiente resultado.

Corolario 1.1.1.1. El par (Bε,Bε ∩ V ) es homeomorfo al par dado por (C(Sε), C(Sε ∩ V )).

Veamos qué se consigue con este teorema. Una de las formas de estudiar la topología local de
un punto en un conjunto analítico sería conocer el tipo topológico del par dado por el conjunto
analítico en un entorno del punto y el ambiente. En particular, en el teorema consideramos
los entornos dados por las bolas de radio ε > 0. El tipo topológico del par (Bε,Bε ∩ V ) se
denomina topología embebida de V , y así, el teorema 1.1.1 nos indica que la topología embebida
de V tiene el mismo tipo topológico que el par (C(Sε), C(Sε ∩ V )). Además, nos dice que no
depende del ε > 0 que consideremos, a partir de uno suficientemente pequeño. El C(Sε∩V ) es un
espacio contractible, por lo que podemos concluir que la hipersuperficie singular V (f)∩Bε tiene
topología trivial: su tipo de homotopía es el del punto. Sin embargo, en el capítulo siguiente,
vamos a encontrar que hipersuperficies próximas a esta, de la forma f−1(s) ∩ Bε no tienen una
topología tan sencilla.

1.2. Algunos resultados previos de transversalidad

Para poder demostrar estos resultados que acabamos de exponer en el caso de singularidades
aisladas necesitamos conocer el siguiente resultado, que tiene importancia por sí mismo.

Proposición 1.2.1. Sea (V, p) un germen de un conjunto analítico con V ⊂ Cn, y supongamos
que p ∈ V es un punto liso o singular aislado de dicho conjunto analítico. Entonces, existe un
ε0 > 0 suficientemente pequeño de manera que cada esfera de radio ε con 0 < ε < ε0 centrada
en p interseca V ∗ = V − Sing(V ) transversalmente.

Demostración. Si llamamos Sε a la esfera de radio ε > 0 centrada en p, que Sε y V ∗ sean
transversales en un punto de su intersección x0 ∈ V ∗ ∩ Sε significa que los espacios tangentes a
Sε y V ∗ en x0 generan todo el espacio ambiente Cn.

La esfera Sε es una superficie de nivel de la función distancia al cuadrado, que es una función
real analítica r : R2n → R dada por:

r(x) = ‖x− p‖2,

luego la esfera es una variedad real de dimensión 2n − 1. Por su lado, el conjunto analítico
V ∗ es una variedad compleja, con dimensión par menor o igual que 2n − 2. Obsérvese que
como p es liso o singular aislado, para un entorno U suficientemente próximo a p se tiene
que U ∩ V ∗ = U ∩ (V − {p}). En particular, para valores de ε > 0 suficientemente pequeños
V ∩ Sε ⊂ V ∗.

Así, ambos conjuntos no son transversales en x0 ∈ V ∗ ∩ Sε si son tangentes en dicho punto, es
decir si y solo si Tx0V ∗ ⊂ Tx0Sε. Los vectores v ∈ Tx0Sε son aquellos que verifican dx0r(v) = 0,
luego la condición anterior es equivalente a que se tenga

dx0r|Tx0V ∗ ≡ 0,
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o lo que es lo mismo: que x0 sea un punto crítico de rV = r|V ∗ . Con esto, si dicha intersección
no contiene puntos críticos de rV , se tiene que V ∗ y Sε son transversos en los puntos de esta.

Lo que probaremos aquí es que toda función analítica real definida sobre una variedad analítica
lisa tiene un conjunto finito de valores críticos. De este modo, tomando b > 0 el valor crítico
mínimo de rV (obsérvese que p /∈ V ∗) tenemos que para ε < b la intersección V ∗∩Sε no contiene
puntos críticos de rV . Así, considerando ε0 > 0 de modo que ε20 sea menor que b tendremos lo
que buscábamos.

Para poder demostrar este hecho, supongamos que V ⊂ Cn viene definido por los ceros de las
funciones holomorfas {f1, ..., fm}. El conjunto de puntos críticos de una función analítica real
g : V ∗ → R es el conjunto de puntos de V ∗ en los que la aplicación diferencial inducida entre
los espacios tangentes no es sobreyectiva.Éste se puede caracterizar como sigue (ver lema 2.7 de
[11]).

Lema 1.2.1. El conjunto de puntos críticos de la función analítica real g : V ∗ → R viene dado
por la intersección V ∗ ∩W , donde W es el conjunto analítico dado por los puntos x ∈ V para
los cuales la matriz formada por la jacobiana junto con una fila con las derivadas parciales de g:

∂g/∂x1 ... ∂g/∂x2n

∂f1/∂x1 ... ∂f1/∂x2n

. .

. .

. .
∂fm/∂x1 ... ∂fm/∂x2n

 ,

tiene rango menor o igual que el máximo que alcanza la jacobiana de las funciones {f1, ..., fm}
en V.

Con esto se puede probar que el conjunto de valores críticos de dicha función g, es decir el
conjunto g(V ∗ ∩ W ), es finito. Ello se debe a que V ∗ ∩ W = W − Sing(V ), y esta resta de
conjuntos analíticos puede expresarse como una unión finita de variedades analíticas. Para ver
esto, en primer lugar consideramos la sucesión de conjuntos que parte de M1 = W − Sing(W ),
que es una variedad analítica lisa, y en la que vamos tomando:

M2 = Sing(W )− Sing(Sing(W )), M3 = Sing(Sing(W ))− Sing(Sing(Sing(W ))),

y así sucesivamente. Como W ⊃ Sing(W ) ⊃ Sing(Sing(W ))... es una sucesión anidada descen-
dente, y puesto que el anillo de las funciones que definen estos conjuntos es noetheriano, esta
cadena tiene que estabilizarse tras un número finito de pasos, es decir: Mn = ∅ para todo n ∈ N
a partir de un cierto índice. Así, se tiene que existe un k ∈ N tal que

W = M1 ∪ ... ∪Mk.

Si ahora tomamos M ′i = Mi ∩ V ∗ se tiene lo que queríamos:

W − Sing(V ) = M ′1 ∪ ... ∪M ′k.

Cada uno de los términosM ′i es un conjunto analítico de puntos lisos, luego se puede descomponer
en una cantidad finita de componentes irreducibles que se corresponden con sus componentes
conexas por caminos. Además, todos los puntos de cada M ′i son puntos críticos de g. Tomando
dos puntos en una misma componente conexa por caminos de M ′i y considerando una curva que
los una, todos los puntos de dicha cruva serán puntos críticos de g, luego g será constante en
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la curva. Con esto, vemos que g es constante en cada componente conexa por caminos de M ′i .
Como hay una cantidad finita de estas, y asimismo, una cantidad finita de factores M ′i , se tiene
que en efecto, g tiene un conjunto finito de valores críticos. Con esto se termina de probar el
resultado que buscábamos.

1.3. Demostración del teorema de estructura cónica

La demostración del teorema 1.1.1 y de su corolario, en el caso de tener un punto liso o singular
aislado, se harán de forma detallada, puesto que ponen en práctica una forma de proceder
que se utiliza constantemente para probar los resultados básicos de la teoría que aquí estamos
estudiando.

Demostración (del teorema 1.1.1 para singularidades aisladas). Sea ε0 > 0 lo suficientemente
pequeño, de manera que Bε0 ∩ V contenga a lo sumo un punto singular dado por p y tal que Sε
interseque transversalmente a V para todo ε ≤ ε0. Veíamos en la demostración anterior que esto
implica que cada punto x ∈ V ∗ ∩ Bε no es un punto crítico de la restricción de r(x) = ‖x− p‖2
a V ∗.

La idea de esta prueba se basa en contruir un campo vectorial diferenciable v(x) en la bola
punteada x ∈ Bε−{p} que verifique unas ciertas condiciones, para obtener sus curvas integrales,
las cuales nos darán la familia de difeomorfismos en cuestión. Estas condiciones son las siguientes.

1. En primer lugar, queremos que el campo no se anule en ningún punto de Bε − {p}. Esto
se hace para asegurar que las curvas integrales no se cortan entre sí.

2. Por otro lado, nos interesa que los vectores del campo apunten “hacia fuera” desde p, de
manera que el producto escalar siguiente, de los vectores vistos en R2n, sea positivo:

〈v(x), x− p〉 =

2n∑
i=1

vi(x)(xi − pi) > 0.

3. Por último, queremos que el campo v(x) sea tangente a la variedad V ∗.

Lo construimos de forma local. Sea y ∈ Bε − {p} fijo.

Si y no pertenece a V , simplemente consideramos vy(x) = x−p para todo x ∈ Uy, donde Uy
es un entorno de y que no corta a V . Se puede ver que este campo verifica las propiedades
1 y 2 de manera sencilla.

Si y ∈ V , y por tanto pertenece a V ∗, tomamos un sistema de coordenadas local {u1, ..., u2n}
en un entorno Uy de y de modo que V ∗ verifique: u1 = ... = u2ρ = 0. Como y no es un
punto crítico de r(x), se debe cumplir que alguna de las siguientes derivadas parciales sea
no nula (las primeras son todas nulas por cómo hemos tomado las coordenadas):

∂r(y)

∂u2ρ+1
, ... ,

∂r(y)

∂u2n
.

Supongamos que es ∂r/∂uh(y) 6= 0, entonces reducimos si es necesario el entorno Uy de y
de modo que no se anule dicha derivada en él. En este entorno establecemos:

vy(x) = ±
(
∂x1(x)

∂uh
, ... ,

∂x2n(x)

∂uh

)
,

tomando el signo + o − en función de si ∂r/∂uh es positiva o negativa respectivamente.
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Si tomamos un punto x ∈ Uy ∩ V ∗, en el sistema de coordenadas que estamos utilizando
este viene dado por (u1(x), ..., u2n(x)), y si consideramos la curva coordenada asociada a
la coordenada uh, es decir, dejamos fijos los valores ui(x) si i 6= h y permitimos que uh(x)
varíe, tenemos que esta curva permanece contenida en V ∗, pues las primeras 2ρ coordenadas
se mantienen nulas. De este modo, aseguramos que el vector definido anteriormente sea
tangente a V ∗ en cada punto del entorno que pertenezca a esta variedad. Además se
cumple:

2〈vy(x), x− p〉 =
∑
i

2vyi (xi − pi) =
∑
i

(
∂r

∂xi

)(
± ∂xi
∂uh

)
= ± ∂r

∂uh
> 0.

Con esto, nos aseguramos que se verifican las propiedades 1 y 2 que se han enumerado
anteriormente. La 3 se garantiza por construcción, como veíamos en el comentario que se
ha realizado en el párrafo anterior.

Tomando ahora una partición diferenciable de la unidad {µy} coherente con los entornos que
hemos ido escogiendo, extendemos este campo local a toda la variedad:

v(x) =
∑

µy(x)vy(x),

y este campo de Bε − {p} hereda las propiedades que queríamos de la construcción local.

Ahora, tomamos la normalización

w(x) =
v(x)

〈2(x− p), v(x)〉
.

Consideramos las curvas integrales x = γ(t) de este último campo, que son las soluciones de la
ecuación diferencial:

dx

dt
= w(x).

Sabemos que estas soluciones deben existir localmente y son únicas, es decir, si x0 ∈ Bε − {p}
existe un intervalo (α, β) ⊂ R que contiene un valor t0 de modo que γ(t) está definida en
dicho intervalo y γ(t0) = x0. Para evitar problemas si x0 pertenece a la frontera de la bola Bε,
supongamos que el campo se ha construido en una bola algo mayor Bε′ con ε′ > ε. Por otro lado,
la normalización escogida hace que dichas curvas verifiquen:

d(r ◦ γ)

dt
(t) =

∑
i

(
∂r

∂xi

)
wi(x) = 〈2(x− p), w(x)〉 = 1.

De modo que, redefiniendo el parámetro t si fuera necesario, tras restarle una constante, se tiene

r(γ(t)) = ‖γ(t)− p‖2 = t.

Veamos que esta solución x = γ(t) puede extenderse al intervalo 0 < t ≤ ε2. Sabemos que la
solución al problema diferencial anterior se puede extender a un intervalo maximal α′ < t < β′,
que por lo que acabamos de comprobar, debe estar contenido en (0, ε′2). Supongamos que β′ ≤ ε2.
Como para todos los valores de t en α′ < t < β′, se tiene que γ(t) ∈ Bε, que es un compacto,
se alcanza un punto límite x′ de γ(t) cuando t tiende a β′, de modo que: r(x′) = β′ 6= 0 luego
x′ ∈ Bε −{p}, y w(x), por cómo lo hemos definido, también es un campo vectorial diferenciable
en torno a este x′. Así, para cada x′′ en un entorno de x′ y cada t′′ en un intervalo suficientemente
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pequeño I que contenga a β′ también se cumple que existe una única solución al problema de
valor inicial dx/dt = w(x), a la que llamamos q(t), con condición inicial q(t′′) = x′′ y t ∈ I. Si
tomamos t′′ ∈ (α′, β′)∩ I, la unicidad de la solución de estos problemas nos dice que γ(t) = q(t)
para t ∈ (α′, β′) ∩ I, luego concatenando ambas soluciones podemos extender la solución γ(t)
a un intervalo mayor que el que habíamos tomado como maximal dado por (α′, β′) ∪ I, lo cual
lleva a contradicción. Por tanto β′ > ε2. Análogamente se puede probar α′ = 0.

Finalmente, notemos que la solución γ(t) con 0 < t ≤ ε2 viene determinada por el valor inicial:

γ(ε2) ∈ Sε.

Así, si restringimos el flujo asociado al campo w(x) a la esfera Sε, es decir, consideramos la
aplicación diferenciable ϕ : Sε×(0, ε2]→ Bε−{p}, tenemos para cada t ∈ (0, ε2] el difeomorfismo
ϕt : Sε → St entre las esferas que nos daba el enunciado, que además depende diferenciablemente
del parámetro. Además, como hemos tomado el campo w(x) tangente a V ∗, las curvas integrales
que pasen por un punto de V ∗ deben quedar totalmente contenidas en esta variedad. Con esto
se tiene que la restricción de ϕ a (V ∩ Sε) × (0, ε2] lleva difeomórficamente este espacio en
V ∩ (Bε − {p}).

Finalmente, para probar el corolario basta con ver que como para cada a ∈ Sε se tiene que ϕt(a)
tiende a p conforme t tiende a 0, la siguiente correspondencia

at+ (1− t)p −→ ϕtε2(a) t ∈ (0, 1]

se puede extender a un homeoformismo entre el C(Sε) y Bε. Este homeomorfismo lleva, tomando
restricciones, C(Sε ∩ V ) en Bε ∩ V .

Vista la prueba del teorema 1.1.1 para singularidades aisladas, se pueden realizar dos obser-
vaciones importantes en relación a la misma. En primer lugar, merece la pena señalar que no
se han precisado argumentos relativos a la holomorfía de las funciones, sino simplemente a su
diferenciabilidad, luego este resultado es aplicable perfectamente a conjuntos analíticos reales.
De hecho, es incluso válido para conjuntos semialgebraicos, es decir, definidos por igualdades y
desigualdades de funciones reales, pero ver esto segundo no es directo.

Por otro lado, como ya se ha comentado, el resultado también es cierto aunque no tengamos una
singularidad aislada en p. La demostración del resultado falla en este caso a la hora de definir el
campo v(x) tangente a V en Bε −{p}. No tiene sentido hablar de espacio tangente en un punto
singular, y al haber puntos singulares arbitrariamente próximos a p, no podremos definir este
campo como necesitamos para la prueba. Como ya se ha comentado, la forma de arreglar esta
cuestión pasa por utilizar estratificaciones de Whitney. Además, es interesante notar que si la
singularidad de V no es aislada, en Link(V ) no será liso y perdemos las propiedades de trans-
versalidad que hemos estudiado. Esta característica se traslada al cono, en el que encontramos
que se cumple:

Sing(C(Link(V ))) = C(Sing(Link(V ))).

Un ejemplo trivial de esta situación en que el lugar singular no es aislado puede observarse en
la hipersuperficie dada por los ceros de f(x, y, z) = x2 − y3 en C3. En este caso tenemos que
Sing(V ) = {(x, y, z) ∈ C3 : x = 0, y = 0}, mientras que z es arbitrario.

1.4. El link de una singularidad y algún ejemplo

Con los resultados que acabamos de probar, se definen los siguientes conceptos.
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Definición 1.4.1. El espacio Sε ∩ V se denomina link de V en p, y se denota por Link(V, p).
Si estamos en la situación en que V es una hipersuperficie definida por los ceros de una función
holomorfa f , se puede denotar al link por Link(f, p). En caso de que se sobreentienda cuál es el
punto p, se denota simplemente por Link(V ) o Link(f).

Obsérvese que si Sε y V son variedades lisas y transversas en cada q ∈ Link(V, p), se tiene
que Link(V, p) es una variedad lisa con dimensión dim(V ) − 1. Además es compacta por ser la
intersección de dos cerrados y ser un conjunto acotado.

Definición 1.4.2. El ε0 > 0 en que se realiza el Teorema 1.1.1, y cualquier otro ε > 0 más
pequeño, se denomina radio de Milnor para V . Asimismo, la esfera Sε y la bola Bε asociadas a
dicho radio y centradas en la singularidad se denominan esfera y bola de Milnor, respectivamente.

Veamos algunos ejemplos interesantes de links en situaciones concretas.

El primero que nos puede venir a la mente es el caso de un punto liso. Sea (V, x0) el germen
de un conjunto analítico con x0 ∈ V un punto liso, con lo que V ⊂ Cn es una variedad
en un entorno de este punto y supongamos dimV = m. En esta situación, tenemos que
el Link(V ) en x0 se corresponde con una esfera usual de dimensión m contenida Sε. Para
demostrarlo se aplica el Lema de Morse (lema 3.1.1), que se expondrá en el capítulo 3 en
detalle. La función real diferenciable dada por la restricción rV : V → R de la función
distancia al cuadrado r(x) = ‖x− x0‖2 a V , tiene un punto crítico no degenerado en x0.
Esto se deduce de que x0 es punto crítico de r:

∇r(x) = 2(x− x0) = 0⇔ x = x0,

luego x0 también debe ser punto crítico de la restricción rV . Además, la matriz hessiana de
r en dicho punto es Hess(x0) = 2I2n. La hessiana de rV se obtiene tomando la restricción
de dicha hessiana de r al tangente a V en x0. Con esto, obtenemos una matriz también
proporcional a la identidad, luego no degenerada y definida positiva, pero esta de orden
m, la dimensión de V . Como acabamos de ver que x0 es un punto crítico no degenerado de
rV de índice 0, aplicando el lema de Morse 3.1.1 podemos concluir que existe un sistema
local de coordenadas {u1, ..., um} en un entorno de x0 en V ∗ tal que

rV (x) = u2
1 + ...+ u2

m.

Con esto se deduce que el Link(V, x0) = V (f) ∩ r−1(ε2) es difeomorfo a la esfera definida
por u2

1 + ...+ u2
m = ε2.

Otro caso interesante es el curvas planas. Si tomamos una función holomorfa f : C2 → C,
se tiene que V (f) := {(x, y) ∈ C2 : f(x, y) = 0} es una curva compleja en C2. En este caso,
la esfera de Milnor tiene dimensión real 3, mientras que el Link(f, p) en torno a un punto
cualquiera p ∈ V (f) tiene dimensión real 2 − 1 = 1 y es una variedad compacta. De este
modo, encontramos que si el link es conexo, lo que se da cuando f es irreducible pues V (f)
tendrá una única componente irreducible (ver última sección del apéndice), entonces es un
nudo, es decir homeomorfo a una circunferencia S1 embebida en S3, lo que puede dar lugar
a que esta se anude sobre sí misma. Si el link tiene más de una componente conexa, será
homeomorfo a un enlace, que no es más que un conjunto de circunferencias posiblemente
anudadas entre sí embebidas en S3. Si se estudian curvas complejas en Cm con m > 2, los
nudos podrían siempre desanudarse, con lo que su topología embebida sería la misma que
la de una curva lisa en Cm. Veamos algunos casos concretos de esta situación con m = 2.

• Si consideramos f(x, y) = xy, se puede observar que 0 es un punto singular de V . El
Link(f) en torno a 0 es el enlace de Hopf, dado por dos S1 anudados entre sí. Esto
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se puede ver de la forma siguiente. El conjunto V (f) viene dado por la unión de los
dos planos coordenados de C2:

V (f) = {(x, y) ∈ C2 : x = 0} ∪ {(x, y) ∈ C2 : y = 0}.

Si consideramos la intersección de cada uno de estos planos con la bola de Milnor,
obtenemos que dicha intersección es un disco contenido en un plano coordenado.
Ambos discos tienen intersección no vacía, pues 0 está en los dos, y de hecho este
el único punto que pertenece a dicha intersección. Usando esto se puede ver que las
fronteras de estos discos, que nos dan el Link(f), son dos S1 anudados en S3.

• Por otro lado, si tomamos f(x, y) = xp − yq, donde p y q son dos enteros coprimos
mayores o iguales que 2, observamos que V (f) tiene una singularidad en 0. El Link(f)
de esta curva en torno al origen es un nudo toroidal de tipo (p, q) en S3, es decir,
un S1 que se anuda p veces alrededor de uno de los S1 que definen el toro, y q veces
alrededor del otro S1. Para obtener este resultado se procede como sigue. El Link(f)
en torno al origen en este caso viene dado por:

Link(f) = {(x, y) ∈ C2 : xp − yq = 0} ∩ {(x, y) ∈ C2 : |x|2 + |y|2 = ε2}.

Supongamos (x, y) ∈ Link(f). La primera condición, conlleva que |x|p = |y|q. Sus-
tituyendo la expresión para |y| que se obtiene en la definición de Sε, tenemos que
|x|2 + |x|2p/q = ε2. Esto último implica que el módulo de x es igual a una constante:
|x| = ξ. Por la relación entre los módulos de x e y, se puede decir lo mismo de esta
segunda componente: |y| = η. Con todo, podemos expresar los complejos x e y de la
siguiente manera:

x = ξeiθ, y = ηeiθ
′
,

con θ, θ′ ∈ [0, 2π). Esto nos permite en primer lugar, ver que (x, y) ∈ S1
ξ × S1

η, es
decir, que en efecto dicho punto está contenido en un toro. Para ver que Link(f) es
el nudo que hemos descrito, sustituimos las expresiones para x e y en

xp − yq = ξpeipθ − ηqeiqθ′ = 0.

Por la relación entre los módulos, podemos cancelar los términos ξp y ηq, y quedarnos
con una relación para las exponenciales. Haciendo un desarrollo de Taylor, a primer
orden nos queda que los argumentos de x e y deben verificar:

θ′ =
p

q
θ.

De este modo, dado un x ∈ S1
ξ tal que (x, y) ∈ Link(f), tenemos identificado el y

que le corresponde en Link(f). Además, por la relación entre los ángulos, si partimos
de un mismo ángulo inicial para x e y y los vamos haciendo recorrer sus respectivas
circunferencias, cuando θ da q vueltas a su circunferencia S1

ξ , θ
′ habrá recorrido p

vueltas a S1
η, y puesto que p y q son coprimos, esta es la primera vez que volvemos al

punto de partida. Así vemos que se obtiene el nudo que describíamos.
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Capítulo 2

La Fibración de Milnor

A partir de ahora, nos centraremos en el caso de hipersuperficies, esto es, conjuntos V (f) :=
{x ∈ U : f(x) = 0} con f una función holomorfa definida en un abierto U de Cn. Por simplicidad
en las expresiones, asumiremos que esta función lleva f(0) = 0. En este capítulo veremos que si
f tiene un punto crítico en el origen y si ε > 0 es un radio de Milnor del germen del conjunto
analítico (V (f), 0), entonces, la función argumento:

f

|f |
: Sε − Link(f, 0)→ S1

es localmente trivial, es decir, Sε − Link(f, 0) está fibrado sobre S1.

En primer lugar, definiremos las hipótesis de las situaciones con las que trabajaremos de aquí
en adelante. A continuación daremos un teorema de gran importancia en este contexto y proba-
remos que los valores críticos de f en un entorno del punto crítico son aislados. Posteriormente
estudiaremos y probraremos el resultado que acabamos de mencionar. Finalmente se probará
una versión alternativa de este resultado que es muy común en este campo y resulta de gran
utilidad.

2.1. Singularidades de hipersuperficies

Como hemos anunciado, en este y los siguientes capítulos trabajaremos con gérmenes de hiper-
superficies. Una exposición más extensa sobre la teoría de conjuntos analíticos y gérmenes de
estos conjuntos analíticos se puede consultar en las secciones A.2 y A.3 del apéndice. Para el
estudio que aquí vamos a realizar, basta con la siguiente noción.

Definición 2.1.1. Una hipersuperficie compleja embebida en Cn es un conjunto V ⊂ Cn de
dicho espacio que localmente se puede definir como los ceros de una cierta función holomorfa.

Como aquí centraremos el estudio en un punto concreto p ∈ V de dicha hipersuperficie, podemos
dar una función f : U → C con U un entorno abierto de p en Cn de manera que

V = V (f) := {x ∈ Cn : f(x) = 0}.

Por simplificar las expresiones consideraremos p = 0 y que la función f lleva f(0) = 0. Con estas
hipótesis definimos las dos situaciones fundamentales con las que trabajaremos en este texto.

Definición 2.1.2. Diremos que la hipersuperficie V (f) es singular en 0 si la función holomorfa
f : U → C con U un entorno abierto en Cn del origen tiene un punto crítico en 0, es decir, si su
gradiente cumple ∇f(0) = 0.
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Definición 2.1.3. Diremos que la hipersuperficie V (f) es singular con una singularidad aislada
en 0 si f tiene un punto crítico aislado en 0.

2.2. Lema de Selección de la Curva y consecuencia sobre los va-
lores críticos

Para poder probar el Teorema de Fibración de Milnor, necesitaremos hacer uso de un resultado
importante en este contexto conocido como el Lema de Selección de la Curva o Lema de Selección
de Curvas.

Lema 2.2.1 (De selección de la curva). Sea U ⊂ Rm un conjunto abierto definido por:

U = {x ∈ Rm : g1(x) > 0, ..., gr(x) > 0},

donde gi con i = 1, ..., r son funciones analíticas. Sea por otro lado V un conjunto analítico dado
por los ceros de un conjunto finito de funciones analíticas. Si 0 ∈ U ∩ V entonces existe una
curva real analítica γ : [0, ε)→ Rm con γ(0) = 0 y tal que γ(t) ∈ U ∩ V para t > 0.

La prueba de este resultado puede encontrarse en el capítulo 3 de [11]. Este lema tiene una
consecuencia importante aplicado en el contexto que estamos estudiando.

Proposición 2.2.1. Sea f : U → C una función holomorfa definida en un abierto U ⊂ Cn
con un punto crítico en 0 ∈ Cn y tal que f(0) = 0. Entonces existe un ε ≥ 0 suficientemente
pequeño tal que 0 es el único valor crítico de f |Bε. En otras palabras, los valores críticos de f
son aislados.

Demostración. Supongamos lo contrario. Entonces, existe una sucesión {xn} de puntos críticos
de f que tiende al origen: xn → 0 cuando n→∞, cuyos valores críticos f(xn) son todos distintos
de 0. En particular, esto significa que 0 es un punto de acumulación del conjunto de puntos
críticos x ∈ Σf tales que f(x) 6= 0. Puesto que Σf es un conjunto analítico, si quitamos f−1(0)
de este conjunto, por ejemplo, tomando:

Σf − f−1(0) = Σf ∩ {x ∈ Cn : ‖f(x)‖2 > 0},

tenemos que este es un conjunto en las condiciones de Lema de Selección de la Curva. Así,
podemos tomar una curva γ(t) con t ∈ [0, ε) de modo que γ(0) = 0 y tal que γ(t) ∈ Σf − f−1(0)
para t > 0, luego en particular, f ◦ γ(t) 6= 0 si t > 0. Sin embargo, al ser cada γ(t) un punto
crítico de f , se tiene que

d(f ◦ γ)(t)

dt
= 0, ∀t ∈ (0, ε).

Así, la función f es constante sobre la curva, y por continuidad, puesto que f(γ(0)) = f(0) = 0,
debe ser constantemente nula en la curva, en contradicción con que γ(t) ∈ Σf − f−1(0). Por
tanto el enunciado debe ser cierto.

2.3. Fibraciones triviales y localmente triviales

Visto esto, pasemos a estudiar qué son las fibraciones triviales, pues este será un concepto
fundamental en lo que sigue.

Definición 2.3.1. Sean X e Y variedades diferenciables, donde X podría tener borde, pero Y
no. Sea φ : X → Y una aplicación diferenciable sobreyectiva. Decimos que φ es una fibración
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diferenciable trivial si existe otra variedad diferenciable F , con borde si X lo tiene, y un difeo-
morfismo ϕ : X → Y ×F de modo que φ = π1 ◦ϕ, con π1 la proyección sobre el primer espacio.
Es decir, tal que el siguiente esquema resulta conmutativo.

X Y × F

Y

ϕ

φ
π1

Si consideramos para cada y ∈ Y la fibra φ−1(y) encontramos que φ−1(y) = ϕ−1({y}×F ), y en
particular tenemos que es difeomorfa a la variedad F .

Definición 2.3.2. En las hipótesis anteriores, decimos que φ es una fibración diferenciable
localmente trivial si para cada p ∈ Y existe un entorno abierto p ∈ Up ⊂ Y de manera que la
restricción:

φ|φ−1(Up) : φ−1(Up)→ Up

es una fibración diferenciable trivial.

Así, si φ es localmente trivial, el espacio X tiene en cada punto la estructura local de un espacio
producto donde uno de los términos es precisamente un entorno abierto de Y y otro la fibra
φ−1(y). Si Y es conexo, en particular, las fibras φ−1(y) para cada y ∈ Y son difeomorfas entre
sí.

En general, una fibración localmente trivial no tiene por qué ser trivial. El caso más claro de
esta circunstancia es el de la banda de Möbius. En ella, se tiene una fibración localmente trivial
sobre la circunferencia se que encuentra en su centro. Esto se debe a que localmente la banda se
obtiene considerando fibras dadas por segmentos rectos pegados a esta circunferencia de manera
ortogonal. Así se tiene la estructura local de producto que acabamos de describir. Sin embargo,
de manera global esto no se verifica, pues la estructura que se obtiene así es el cilindro. Este
espacio es distinto de la banda de Möbius por ser orientable.

Al margen de esto, sí existe un caso concreto para el cual ambos conceptos se hacen equivalentes:
una fibración localmente trivial sobre un espacio contractible es una fibración trivial.

Finalmente, incluimos un resultado debido a Ehresmann [4] que nos será útil en el futuro y nos
permite identificar cuándo una aplicación es localmente trivial.

Teorema 2.3.1. Sean M y N dos variedades diferenciables, que en principio supondremos sin
borde. Supongamos que f : M → N es una aplicación diferenciable sobreyectiva propia (es decir
bajo la cual las preimágenes de compactos de N son compactos en M) y que es submersión (su
diferencial en cada punto de M es sobreyectiva). Entonces f es localmente trivial.

Si ademásM tiene borde, esto es ∂M 6= ∅, y f |∂M es una submersión, entonces también podemos
concluir que f es localmente trivial.

2.4. El teorema de la Fibración de Milnor

Antes de enunciar y demostrar el resultado que da nombre a la sección, conviene fijar una serie
de notaciones. En primer lugar, a partir de ahora consideramos el producto interno hermítico y
sesquilineal de Cn definido para cada par de vectores u, v ∈ Cn por:

〈u, v〉 :=

n∑
i=1

uivi.
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Por otro lado, dada una función f : Cn → C holomorfa, definimos el gradiente complejo tomando
las conjugadas de las derivadas parciales complejas:

∇Cf :=

((
∂f

∂z1

)
, ...,

(
∂f

∂zn

))
.

Esta definición se toma así para que la regla de la cadena aplicada a la función f a lo largo de
un camino γ(t) tome la forma a la que estamos acostumbrados con el producto anterior:

d(f ◦ γ)(t)

dt
=
df(γ(t))

dt
=

n∑
i=1

∂f

∂zi

dγi
dt

= 〈γ′(t),∇Cf〉.

En particular, si el camino γ(t) cumple que γ(t0) = z0 y γ′(t0) = v, tenemos que la derivada
direccional de f en z0 en la dirección de v ∈ Cn es lo que esperamos:

d(f ◦ γ)(t0)

dt
= 〈γ′(t0),∇Cf(z0)〉 = 〈v,∇Cf(z0)〉.

Por último, podemos recuperar una estructura de espacio vectorial euclídeo real sobre R2n.
Basta con considerar las componentes real e imaginaria de cada coordenada: uj = aj + ibj y
vj = a′j + ib′j , y tomar el producto escalar para u, v ∈ R2n dado por:

R〈u, v〉 =
n∑
j=1

(aja
′
j + bjb

′
j),

que, como vemos, coindice con el producto euclídeo usual. Así, la propiedad de hermiticidad se
traduce en simetría:

R〈u, v〉 = R〈v, u〉 = R〈v, u〉,

mientras que la sesquilinealidad simplemente en bilinealidad.

Esto permite, por ejemplo, caracterizar el espacio tangente una esfera S centrada en 0 en un
punto p ∈ S de la forma siguiente:

TpS = {v ∈ Cn : R〈v, p〉 = 0}.

Esto se debe a que la esfera es una variedad real, pues es la superficie de nivel de la función
distancia, que es una función real.

Con esto claro, sea (V (f), 0) el germen de una hipersuperficie definida por los ceros de una
función holomorfa f : U → C, con U un entorno abierto del 0 en Cn, que verifica f(0) = 0.

Teorema 2.4.1 (Teorema de fibración de Milnor). En las hipótesis anteriores se tiene que
existe un ε0 > 0 tal que para cada 0 < ε < ε0 la función argumento dada por

φ : Sε − Link(f, 0) −→ S1

z −→ φ(z) =
f(z)

|f(z)|

donde S1 es la circunferencia, es una fibración diferenciable localmente trivial. La fibra de φ se
denotará por Fθ := φ−1(eiθ).

La demostración de este resultado tiene dos partes diferentes.
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En primer lugar, se debe probar que para ε > 0 suficientemente pequeño φ no tiene
puntos críticos sobre Sε − Link(f, 0), para que así las fibras Fθ = φ−1(eiθ) sean variedades
diferenciables de Sε.

Una vez hecho esto, se construye un campo vectorial apropiado que nos permita ver la
estructura topológica local de producto.

Para ello, es muy útil observar que la función argumento se puede expresar como una determi-
nación continua del argumento de f , es decir, mediante una función θ : Sε − Link(f, 0) → R
diferenciable tal que:

φ(z) =
f(z)

|f(z)|
= eiθ(z).

Dado p ∈ Sε − Link(f, 0), se tiene que las diferenciales de ambas funciones se relacionan por:

dpφ(z) = ieiθ(z)dpθ(z).

Puesto que la exponencial es siempre no nula, esto conlleva que los puntos críticos de ambas
funciones son los mismos, y además, por su expresión sabemos que las fibras de θ(z) y φ(z)
coinciden.

De este modo, en la primera parte de la demostración que hemos comentado antes, podemos
centrarnos en buscar los puntos críticos de θ(z). Veamos que su derivada direccional se puede
caracterizar de modo sencillo. Si consideramos el valor principal del logaritmo complejo, al que
denotamos por Log para distinguirlo del logaritmo real, se cumple que Log f(z) = log |f(z)| +
iθ(z). Teniendo en cuenta que θ(z) es una función real, esta se puede expresar de la siguiente
manera

θ(z) = R (−iLog f(z) + i log |f(z)|) = R (−iLog f(z)) .

Con esto, si tomamos un camino γ(t) tal que γ(t0) = z0 y γ′(t0) = v, podemos expresar la
derivada de θ(z) en z0 en la dirección de v como:

d(θ ◦ γ)

dt
(t0) = R

(
d(−iLog f ◦ γ)

dt
(t0)

)
= R 〈γ′(t0),∇C(−iLog f(z0))〉 = R 〈v, i∇C Log f(z0)〉.

A partir de todo esto se deduce el siguiente lema.

Lema 2.4.1. Los puntos críticos de la función φ(z) restringida a Sε − Link(f, 0) son aquellos
z0 ∈ Sε − Link(f, 0) tales que i∇C Log f(z0) es un múltiplo real de z0. Además, en caso de que
z0 no sea un punto crítico de dicha restricción, el espacio tangente a la fibra de φ en z0 es el
espacio ortogonal euclídeo a i∇C Log f(z0) en Tz0Sε.

Demostración. En efecto, si i∇C Log f(z0) = λz0 con λ ∈ R se tiene que la derivada anterior
se anula para cada v ∈ Tz0Sε, por lo que z0 es un punto crítico de θ(z) y por tanto de φ(z).

Además, aunque no sea un punto crítico de φ(z) restringida a Sε − Link(f, 0), si consideramos
una curva γ(t) tal que γ(t0) = z0 y totalmente contenida en la fibra de φ(z) que contiene a z0,
entonces se tiene que θ ◦γ es constante. De este modo, también se anula la derivada anterior. De
ahí deducimos que el espacio tangente a la fibra de φ(z) en z0, dado por los vectores v = γ′(t0),
es el complemento ortogonal euclídeo al vector i∇C Log f(z0).

Con esto, para demostrar la primera parte del resultado basta con ver que a partir de un cierto
radio de Milnor se cumple que para cada z0 ∈ Sε−Link(f, 0) los vectores i∇C Log f(z0) y z0 son
linealmente independientes sobre los reales. De hecho, se puede probar un resultado más preciso
sobre la relación entre ambos.
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Lema 2.4.2. Existe un valor ε0 > 0 tal que para todo z ∈ Cn − V con |z| ≤ ε0, los vectores z y
i ∇C Log f(z) o bien son linealmente independientes sobre los números complejos, o bien:

∇C Log f(z) = λz,

donde λ es un número complejo no nulo cuyo argumento, considerado en (−π, π], tiene valor
absoluto menor que π/4.

Este resultado, en particular, prueba lo que nos interesa, pues el complejo λ cumple queR(λ) > 0,
luego no puede ser imaginario puro, y así no se puede cumplir la condición para que z sea punto
crítico de φ(z).

Para probar el lema 2.4.2 se hace uso del Lema de Selección de la Curva. Esta demostración se
omite en este trabajo por brevedad y se puede consultar en el capítulo 4 de [11].

Sin embargo, sí entramos con detalle en la segunda parte de la demostración del teorema 2.4.1.
En ella, se aplican técnicas semejantes a las que utilizábamos en el capítulo anterior. En este
caso, buscamos construir un campo v(z) en z ∈ Sε − Link(f, 0) que verifique las siguientes
propiedades:

1. ser no nulo en cada punto de Sε − Link(f, 0),

2. ser tangente a Sε, esto es, verificar R〈v(z), z〉 = 0 para cada z ∈ Sε − Link(f, 0),

3. y finalmente, ser transversal a las fibras. Para conseguir esto se impone que cumpla para
cada z ∈ Sε − Link(f, 0):

R〈v(z), i∇C Log f(z)〉 6= 0.

Ello nos permite normalizar el campo v(z) de la forma siguiente

w(z) =
v(z)

R〈v(z), i∇C Log f(z)〉
.

Este último campo w(z) cumple que, si z = γ(t) es una curva integral suya,

d(θ ◦ γ)

dt
(t) = R 〈w(z), i ∇C Log f(z)〉 = 1.

Así, el campo w(z) será un levantamiento del campo unitario sobre la circunferencia S1 ⊂
C. Podremos asegurar la primera condición gracias a que a partir de cierto radio de Milnor
tenemos que θ(z), y φ(z), tienen ambas diferencial sobreyectiva.

Construimos este campo localmente. Dado z0 ∈ Sε−Link(f, 0) tenemos las dos opciones siguien-
tes.

Por un lado, es posible que z0 y ∇C Log f(z0) sean linealmente independientes sobre el
cuerpo de los complejos. Esta es una condición abierta, pues es equivalente a que la matriz
dada por las componentes de z0 y ∇C Log f(z0) tenga algún menor de orden 2 no nulo.
Así, podremos garantizar que se cumple en un entorno abierto Uz0 de z0. En cada punto
z∗ ∈ Uz0 se define el sistema de ecuaciones lineales:

〈v∗, z∗〉 = 0,

〈v∗, i∇C Log f(z∗)〉 = 1,

para un v∗ ∈ Cn cualquiera. Como el rango de la matriz de coeficientes del sistema es
máximo (por la independencia lineal de z∗ y i∇C Log f(z∗) en cada punto z∗ de Uz0), este
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sistema tiene solución v∗ ∈ Cn, que nos permite definir el campo vz0(z∗) = v∗ en Uz0 con
las propiedades que enumerábamos antes.

En efecto, v∗ 6= 0 por la segunda ecuación del sistema. Además, este vector v∗ es tangente
a Sε en z∗ pues por la primera ecuación: R〈v∗, z∗〉 = 0, y esta es la condición que veía-
mos que caracterizaba al espacio tangente a la esfera. Por otro último, también verifica
R〈v∗, i∇C Log f(z∗)〉 = 1 6= 0 por construcción.

La otra posibilidad sería que ∇C Log f(z0) = λz0 con λ ∈ C, donde, por el lema 2.4.2, el
argumento de λ será menor estricto que π/4 en valor absoluto. De nuevo, la condición∣∣∣arg〈∇C Log f(z0), z0〉

∣∣∣ < π

4

es una condición abierta, luego podemos garantizar que se cumple para todo z∗ en un
entorno abierto Uz0 de z0. Si para cada z∗ ∈ Uz0 establecemos vz0(z∗) = iz∗, este campo
local verifica que

R〈iz∗, z∗〉 = 0,

y que ∣∣∣arg〈iz∗, i∇C Log f(z∗)〉
∣∣∣ =

∣∣∣arg〈z∗,∇C Log f(z∗)〉
∣∣∣ < π

4
.

Por la definición que hemos tomado, como z∗ ∈ Sε, el campo no se anula en ningún
punto de Uz0 . La primera ecuación nos permite concluir que se trata de un campo tan-
gente a la esfera. Finalmente, la propiedad sobre el argumento nos permite concluir que
R〈v(z∗), i∇C Log f(z∗)〉 > 0, y en particular es distinta de 0, en cada punto del entorno
z∗ ∈ Uz0 .

En cualquiera de los casos hemos podido construir un campo tangente diferenciable en un en-
torno Uz0 de z0, dado por vz0(z), que verifica las propiedades que nos interesaban. Usando
una partición diferenciable de la unidad {µz0} subordinada a los entornos {Uz0}, obtenemos un
campo diferenciable global v(z) definido para todo z ∈ Sε − Link(f, 0) como:

v(z) =
∑

µz0(z)vz0(z).

Por construcción, esta campo v(z) hereda las propiedades que nos intersaban del local. En efecto,
debe verificar

R〈v(z), z〉 =
∑

µz0(z) R〈vz0(z), z〉 = 0

y puesto que µz0 ≥ 0 para cada z0 ∈ Sε − Link(f, 0)

R〈v(z), i∇C Log f(z)〉 =
∑

µz0(z) R〈vz0(z), i∇C Log f(z)〉 > 0.

Así, tenemos que v(z) es no nulo por la segunda ecuación, tangente a la esfera por la primera,
y verifica que el producto R〈v(z), i∇C Log f(z)〉 6= 0.

Gracias a esta última propiedad, tomamos la normalización que anunciábamos:

w(z) =
v(z)

R〈v(z), i∇C Log f(z)〉
.

Este campo w(z), como ya hemos comentado, cumple

R〈w(z), i∇C Log f(z)〉 = 1,
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y además, que 〈w(z), i∇C Log f(z)〉 tiene argumento menor en valor absoluto que π/4. Esto
último también se hereda de la definición local, que verifica esta condición, pues al sumar números
complejos con esta propiedad obtenemos un resultado que también pertenece a este cuadrante.

El flujo asociado al campo w(z) será el que nos de el difeomorfismo que necesitamos para probar
que φ es localmente trivial. Recordemos que queremos ver que existe un Uθ entorno abierto en
la circunferencia de un determinado eiθ tal que el siguiente diagrama es conmutativo

Sε − Link(f, 0) ⊃ π−1(Uθ) Uθ × Fθ

S1 ⊃ Uθ

ϕθ

φ
π1

y donde además la aplicación ϕθ es un difeomorfismo.

Lo primero que vamos a comprobar es que el flujo que nos dan las órbitas del campo es completo,
esto es, dichas curvas integrales están definidas en todo R. Sabemos que estas deben existir
localmente para un cierto intervalo maximal I ⊂ R. Lo que queremos probar es que de hecho
I = R. Esto lo tendríamos asegurado en caso de estar trabajando en una variedad diferenciable
compacta, pero Sε−Link(f, 0) no lo es. Tenemos que ver que una curva integral γ(t) cualquiera
no tiende a V ∩ Sε para un valor finito del parámetro de la curva t0 ∈ R, lo que “cortaría” su
intervalo de definición. Si esto sucediera deberíamos tener:

ĺım
t→t0

f(γ(t)) = 0⇒ ĺım
t→t0
R(Log f(γ(t))) = ĺım

t→t0
log |f(γ(t))| = −∞.

Sin embargo, encontramos que la derivada:

dR(Log f ◦ γ)

dt
= R〈γ′(t),∇C Log f〉 = R〈w(γ(t)),∇C Log f〉 = −I〈w(γ(t)), i∇C Log f〉

que en particular tiene valor absoluto menor que 1, pues el argumento de dicho producto hermí-
tico era menor que π/4. Así el crecimiento de la función está controlado y no puede dispararse
a infinito para un valor finito t0. Esto concluye que el flujo es completo.

Por otro lado recordemos que sobre las curvas integrales γ(t) del campo w(z) se tiene

d(θ ◦ γ)

dt
(t) = R 〈w(z), i ∇C Log f(z)〉 = 1.

Así θ(γ(t)) = t+ θ0 con θ0 el ángulo al que va a parar el valor inicial de la curva γ(0) = z0 vía
φ. Visto de otro modo: el camino γ(t) es tranversal a las fibras de manera que su imagen vía
φ recorre la circunferencia con velocidad unitaria. Esto sumado a que t recorre todos los reales
nos permite ver que φ es sobreyectiva.

En definitiva, hemos encontrado un flujo completo sobre Sε − Link(f, 0) y sabemos cómo se
comporta nuestra aplicación φ, que es sobreyectiva y diferenciable, sobre las órbitas del flujo.
Para cada t ∈ R tenemos un difeomorfismo ϕt : Sε − Link(f, 0) → Sε − Link(f, 0) que lleva la
fibra Fθ = φ−1(eiθ) en la fibra Fθ+t, y este difeomorfismo depende de forma diferenciable del
parámetro t. De este modo, dado un entorno Uθ de eiθ en S1 suficientemente pequeño, hemos
conseguido encontrar el difeomorfismo:

Uθ × Fθ → φ−1(Uθ)

(ei(θ+t), z) → ϕt(z)

Con lo que en efecto podemos afirmar que φ es una fibración diferenciable localmente trivial.
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2.5. Fibración de Milnor en el tubo

En la literatura encontramos comúnmente dos fibraciones localmente triviales a las que se deno-
mina Fibración de Milnor. La que acabamos de desarrollar es la que introdujo el propio Milnor
en [11]. En esta sección veremos la otra fibración que existe. Consideremos una hipersuperficie
singular en el origen.

Teorema 2.5.1 (Fibración de Milnor en el tubo). Sea Bε una bola de Milnor (ver definición
1.4.2). Entonces existe un δ0 > 0 tal que para cada δ < δ0, si Dδ es el disco cerrado en C de
radio δ > 0 y centro en 0 ∈ C y ∂Dδ ∼= S1 es su borde, entonces:

ψ := f |f−1(∂Dδ)∩Bε : f−1(∂Dδ) ∩ Bε → ∂Dδ

es una fibración diferencial localmente trivial.

Para poder comprobar que esta función es localmente trivial, necesitamos ver primero el siguiente
resultado. Denotemos D∗δ := Dδ − {0}.

Lema 2.5.1. Dado ε > 0 un radio de Milnor, existe un δ > 0 suficientemente pequeño tal que
para cada t ∈ C con 0 < |t| ≤ δ la fibra f−1(t) interseca transversalmente a Sε.

Para el caso en que se tiene una singularidad aislada en el origen, la demostración es sencilla.
En este caso, sabemos que existe un ε > 0 suficientemente pequeño tal que (V (f) ∩ Bε) − {0}
es un conjunto liso. Por otro lado, también hemos comprobado en el lema 2.2.1 que el 0 era un
valor crítico aislado de f , luego existe un δ > 0 suficientemente pequeño tal que todas las fibras
f−1(t) ∩ Bε con t ∈ D∗δ son lisas. Juntando ambas hipótesis, se tiene que (f−1(Dδ) ∩ Bε) − {0}
es un conjunto liso. Esto nos permite repetir los argumentos que utilizamos en la proposición
1.2.1 para ver que las fibras f−1(t) con t ∈ D∗δ son transversales a Sε a partir de un cierto radio.
En efecto, la función distancia al cuadrado, que es una función analítica real, tendrá sobre el
conjunto liso (f−1(Dδ) ∩ Bε) − {0} un conjunto finito de valores críticos, luego redefiniendo el
radio ε > 0 para que sea menor al mínimo de entre estos, tenemos que el conjunto de las esferas
con radio menor que ε intersecan transversalmente a las fibras f−1(t) con t ∈ D∗δ .

No obstante, el resultado se verifica en general. Si la singularidad no es aislada, como ya hemos
dicho anteriormente, no tenemos un Link(f, 0) liso, por lo que fallan los argumentos anteriores.
Para probar el resultado en estas circunstancias se hace uso de argumentos relacionados con
estratificaciones de nuevo, y aquí lo omitiremos.

Demostración (del teorema 2.5.1). Veamos que la función de teorema 2.5.1 es localmente
trivial utilizando el teorema de Ehresmann 2.3.1. Consideramos ε > 0 y δ > 0 verificando el
lema anterior. Llamamos E a f−1(∂Dδ)∩Bε, de modo que ∂E = f−1(∂Dδ)∩Sε y así, la función
del enunciado es

ψ = f |E : E → ∂Dδ.

Veamos primero que ψ es una submersión en el interior de E y restringida a su frontera.

Dado z ∈ E − ∂E, como hemos visto que las fibras f−1(t) ∩ Bε con t ∈ D∗δ son lisas,
en particular las que provienen de t ∈ ∂Dδ también lo son. De este modo, para cada
z ∈ E − ∂E = f−1(∂Dδ) ∩ B̊ε, existe un entorno de E − ∂E en el que ψ = f , y podemos
garantizar que ψ es una submersión en z pues f lo es en dicho entorno.

Ahora, si z ∈ ∂E, denotando f(z) = t ∈ Dδ por el lema anterior se cumple que f−1(t)
interseca transversalmente a Sε en z, y por tanto, si restringimos f a ∂E seguimos teniendo
una submersión.
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Además, ψ es propia. Sea K ⊂ ∂Dδ un conjunto compacto, luego cerrado en ∂Dδ. Como ψ es
continua, ψ−1(K) es cerrado en E, que es acotado, luego ψ−1(K) es un compacto en E. Por
tanto ψ es propia.

Así, por el teorema de Ehresmann ψ es una fibración localmente trivial.

2.6. Equivalencia entre las fibraciones de Milnor en la esfera y
en el tubo

Comencemos viendo qué significa que dos fibraciones son equivalentes.

Definición 2.6.1. Se dice que dos fibraciones localmente triviales f : X → Y y f ′ : X ′ → Y ′ son
equivalentes si existen difeomorfismos Φ : X → X ′ y Θ : Y → Y ′ de manera que Θ ◦ f = f ′ ◦Φ.

Obsérvese que para una hipersuperficie singular las fibras en el tubo son compactas, mientras
que las de la función argumento son variedades abiertas. Como un espacio es cerrado y el otro
es abierto, no puede haber un difeomorfismo entre el tubo y la esfera sin el link. La equivalencia
entre ambas fibraciones se prueba para el caso en que restringimos la función en el teorema 2.5.1
a la bola abierta B̊ε, restricción que renombramos de la forma siguiente

ψ̊ := f |f−1(∂Dδ)∩B̊ε .

Teorema 2.6.1. Las fibraciones localmente triviales

ψ̊ : f−1(∂Dδ) ∩ B̊ε → ∂Dδ y φ : Sε − Link(f, 0)→ S1,

donde esta segunda es la definida en el teorema 2.4.1, son equivalentes.

Para demostrar esta equivalencia se procede en dos etapas.

1. Primero se prueba que ψ̊ es equivalente a φ̊, la fibración que se obtiene al restringir

φ̊ := φ|Sε−f−1(Dδ).

2. Después se comprueba que φ̊ y φ también son equivalentes.

Para demostrar la primera parte, se plantean los dos lemas siguientes. En el primero de estos
lemas construimos un campo apropiado, a partir del cual en el segundo probaremos que existe
un difeomorfismo entre el tubo abierto f−1(∂Dδ)∩ B̊ε y el espacio Sε− f−1(Dδ) que preserva las
fibras.

Lema 2.6.1. Existe un campo diferenciable de vectores v(z) con z ∈ Bε − V (f) de modo que el
producto escalar:

〈v(z),∇C Log f(z)〉

es real y positivo para todo z ∈ Bε − V (f), y que el producto:

〈v(z), z〉

tiene parte real positiva constante.

Demostración. Se construye localmente de modo análogo al de la demostración del teorema
2.4.1. Una representación gráfica de lo que buscamos se presenta en la figura 2.1.

Sea z0 ∈ Bε − V (f). Se tienen las dos opciones siguientes.
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Figura 2.1: Diagrama del campo de vectores que se construye para “inflar” el tubo de Milnor y
llevarlo sobre la esfera de Milnor. Imagen extraída de [15].

Si z0 y ∇C Log f(z0) son linealmente independientes sobre el cuerpo de los complejos,
entonces existe un entorno abierto Uz0 de z0 en Bε − V (f) en el que se mantiene dicha
independencia lineal para cada z∗ ∈ Uz0 y el correspondiente ∇C Log f(z∗). Así, dado
z∗ ∈ Uz0 , el sistema de ecuaciones lineales:

〈v∗,∇C Log f(z∗)〉 = 1,

〈v∗, z∗〉 = 1,

tiene una solución v∗ que cumple las condiciones del enunciado por definición. De este modo
definimos el campo local vz0(z∗) = v∗ para cada z∗ ∈ Uz0 , cumpliendo lo que buscábamos.

Si ∇C Log f(z0) = λz0 con λ ∈ C se cumple por el lema 2.4.2 que R(λ) > 0. Así, si
consideramos el vector complejo λz0 se verifica que

〈λz0,∇C Log f(z0)〉 = ‖λz0‖2 > 0

y que
R〈λz0, z0〉 = R(λ)‖z0‖2 > 0.

Las dos condiciones anteriores sobre los productos hermíticos son condiciones abiertas,
luego podemos asegurar que se verifican para cada z∗ ∈ Uz0 , con Uz0 un entorno abierto
de z0 en Bε− V (f). Así, estableciendo vz0(z∗) = λz∗ para cada z∗ ∈ Uz0 se tiene el campo
local que buscábamos.

Con esto, tomamos una partición diferenciable de la unidad subordinada a los entornos {Uz0} y
extendemos el campo local a uno global v(z) definido en Bε − V (f). Para asegurar que la parte
real es constante además de positiva, simplemente establecemos la normalización

v(z)

R〈v(z), z〉
,

haciendo que sea siempre igual a 1. Obsérvese que esto está bien definido pues el denominador
no se anula nunca.

Lema 2.6.2. Existe un difeomorfismo entre f−1(∂Dδ) ∩ B̊ε y Sε − f−1(Dδ) que lleva difeomór-
ficamente la fibra ψ̊−1(c) = f−1(c) ∩ B̊ε en la fibra φ̊−1(c/|c|), con |c| = δ.
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Demostración. Tomando el campo cuya existencia acabamos de probar, consideramos para
cada z0 ∈ f−1(∂Dδ) ∩ B̊ε su curva integral γ(t) que cumple la condición inicial γ(0) = z0.

Como tenemos que:
dLog f(γ(t))

dt
= 〈γ′(t),∇Log f(γ(t))〉

es real y positivo, y dado que
Log f = log |f |+ i arg f

podemos afirmar que el argumento de f(γ(t)) es constante y que su módulo es una función
estrictamente creciente en t.

Además, la condición:

d‖γ(t)‖2

dt
=

d

dt
R〈γ(t), γ(t)〉 = 2R〈γ′(t), γ(t)〉 > 0

también nos garantiza que |γ(t)| es una función creciente de t.

Con estas dos conclusiones tenemos que el camino anterior que empieza en un punto z0 ∈
f−1(∂Dδ) ∩ B̊ε, lo aleja del origen en una dirección en la que aumenta |f | hasta llevarlo a otro
punto z1 ∈ Sε para algún valor del parámetro, pongamos t = t1. De hecho, se cumple que el
punto z1 está contenido en Sε− f−1(Dδ), pues al ser |f | estrictamente creciente sobre el camino
γ(t), se tiene |f(z1)| > |f(z0)| = |c| = δ.

Además, si en particular z0 ∈ f−1(c) para un cierto c ∈ ∂Dδ se verifica:

f(z0)

|f(z0)|
=

c

|c|
=

f(z1)

|f(z1)|
,

pues como veíamos antes, en estos caminos el argumento de la función permanece constante. Así
vemos que se tiene la correspondencia entre las fibras que se establece en el enunciado.

Finalmente, esta es toda la imagen, pues podemos hacer el proceso contrario al aquí expuesto:
considerar un punto en Sε− f−1(Dδ) y tomar el camino en sentido inverso (reparametrizando la
solución) de modo que lo termina llevando a un punto en f−1(∂Dδ) ∩ B̊ε. Con esto además se
prueba que esta correspondencia diferenciable entre ambos espacios es un difeomorfismo, pues
tiene inversa asimismo diferenciable.

Vayamos ahora con la segunda parte de la prueba que comentábamos.

Lema 2.6.3. Las fibraciones φ̊ = φ̊ := φ|Sε−f−1(Dδ) y φ son equivalentes.

Demostración. Siguiendo el proceso al que ya estamos habituados, se debe construir un campo
diferenciable de Sε−Link(V ) cuyas curvas integrales nos den un difeomorfismo que preserve las
fibras entre Sε − Link(V ) y Sε − f−1(Dδ). Para ello, consideremos la función real positiva |f |
restringida a Sε − Link(V ).

En primer lugar se utiliza el lema de Selección de Curvas para mostrar que para cada θ ∈ R
existe un δ > 0 suficientemente pequeño de manera que la restricción

|f ||Fθ∩f−1(D∗δ)∩Sε

no tiene puntos críticos. Si se supone lo contrario, existe una sucesión {zn} de puntos críticos de
|f | restringida a Fθ arbitrariamente próximos a Link(V (f), 0), luego con |f(zn)| → 0 conforme
n → ∞. Por la compacidad de Sε este conjunto de puntos tendrá un punto de acumulación z0
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que por continuidad de la función |f | debe estar en z0 ∈ Link(V (f), 0). El lema de Selección
de Curvas nos permite concluir que existe una curva γ : (0, ε′) → Sε − Link(V (f), 0) cuyos
puntos son todos puntos críticos de |f | restringida a Fθ, y con γ(t) → z0 cuando t → 0. Pero
entonces |f(γ(t))| debe ser constante y, por continuidad debería ser constantemente nula, lo que
es incompatible con que γ(t) esté en Sε−Link(V (f), 0) para t > 0. Por tanto lo que afirmábamos
debe ser falso.

Si consideramos la aplicación que asocia a cada θ ∈ S1 el δ > 0 que cumple lo que acabamos
de probar, se puede comprobar que esta es continua. Así, como S1 es un compacto, se puede
escoger un δ que verifique que la restricción de |f | en toda fibra Fθ no tiene puntos críticos en
f−1(D∗δ) ∩ Sε.

Ahora, construyamos el campo sobre Sε − Link(V ) siguiendo los pasos siguientes.

1. Sea un δ′ tal que 0 < δ′ � δ. Cambiamos el δ que habíamos obtenido en la discusión
anterior por δ − δ′, lo que nos permite asumir que la restricción de |f | a las fibras Fθ no
tiene puntos críticos en f−1(D∗δ+δ′) ∩ Sε.

2. Sean z ∈ f−1(D∗δ+δ′) ∩ Sε y denotamos a la restricción |f |θ = |f ||Fθ . Se define el campo

v(z) =
∇|f |θ
‖∇|f |θ‖2

(z).

Este campo es tangente a las fibras Fθ por definición. Además es diferenciable puesto que
|f |θ no tiene puntos críticos en f−1(D∗δ+δ′) ∩ Sε y por tanto el denominador no se anula.

3. Con esta definición del campo v(z), una curva integral del mismo γ(t) que comience en
γ(0) ∈ Fθ se mantiene en dicha fibra. Así, podemos comprobar que se verifica

d|(f ◦ γ)(t)|
dt

= 〈γ′(t),∇|f ◦ γ|〉 =
1

‖∇|f |θ‖
2 〈∇|f |θ,∇|f |θ〉 = 1.

Por tanto, se tiene: |f(γ(t))| = t+ |f(γ(0))|

4. Finalmente consideramos una función diferenciable g : (0,+∞) → [0, 1] que, como las
particiones diferenciables de la unidad, nos permita extender este campo a toda la esfera.
Esto se hace imponiendo que g sea tal que:

g(t) = 1 si t ≤ δ,

g(t) ∈ [0, 1] para t ∈ (δ, δ + δ′) y

g(t) = 0 si t ≥ δ + δ′.

Con esta definimos el campo que buscábamos en Sε − Link(V (f), 0) es el dado por:

w(z) =

{
v(z)g(|f(z)|) si z ∈ Sε ∩ f−1(D∗δ+δ′)
0 en c. c.

.

Puesto que g es diferenciable, w(z) es diferenciable.

Gracias a este campo, encontramos el difeomorfismo de Sε−Link(V (f), 0) en Sε−f−1(Dδ) dado
por la correspondencia Θ que definiremos a continuación. Sea γ(t) la curva integral del campo
w(z) con condición inicial z0 ∈ Sε−Link(V (f), 0), que supongamos que está en una fibra z0 ∈ Fθ.

Si z0 ∈ Sε − f−1(D∗δ+δ′), entonces la curva deja fijo este punto. Así, definimos Θ(z0) = z0

y hemos terminado.
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Si z0 ∈ Sε ∩ f−1(D∗δ+δ′), entonces, por cómo hemos ido tomando los campos, esta cur-
va lleva z0 a otros puntos γ(t) en la misma fibra Fθ tales que |f(γ(t))| es mayor que
|f(z0)|. En particular, si se establece Θ(z0) = γ(δ), entonces tendremos que Θ(z0) está en(
Sε ∩ f−1(D∗δ+δ′)

)
− f−1(Dδ) ⊂ Sε − f−1(Dδ).

Esta función Θ constituye el difeomorfismo que conserva las fibras que buscábamos y concluye
la prueba. Que es un difeomorfismo se ve reparametrizando los caminos para dar la inversa
diferenciable.

Con todo lo que hemos desarrollado en las dos últimas secciones, se fijan las siguientes notaciones.

Definición 2.6.2. Se denomina fibra de Milnor a la fibra abierta de la aplicación del teorema
2.4.1

Fθ := φ−1(eiθ),

que está bien definida pues las fibras Fθ y Fθ′ son difeomorfas para valores θ 6= θ′.

Se denomina fibra de Milnor compacta o fibra de Milnor en el tubo a la fibra de la aplicación del
teorema 2.5.1, dada por

Fs := f−1(s) ∩ Bε

para s ∈ ∂Dδ con δ > 0 en las hipótesis del teorema. De nuevo, está bien definida pues esta fibra
es difeomorfa a la que resulta de considerar cualquier otro s′ ∈ ∂Dδ distinto al anterior.

Por lo que acabamos de demostrar, se tiene que Fθ es difeomorfa a Fs, y que Fθ lo es a F̊s =
f−1(s) ∩ B̊ε.

Conocer estas dos fibraciones equivalentes asociadas al germen de una hipersuperficie proporcio-
na gran riqueza al estudio de sus propiedades. La primera fibración, como veremos pronto, nos
permitirá obtener información importante sobre la topología de las fibras. La segunda fibración
resulta más útil de cara a generalizaciones que se realizaron de los conceptos desarrollados por
Milnor, que aquí no estudiaremos. Aquí la utilizaremos especialmente en el estudio del caso de
una singularidad aislada que desarrollaremos en el capítulo 4. Además, es interesante puesto que
muestra la fibra singular como el límite de una familia de variedades complejas que degeneran
en la hipersuperficie.

Obsérvese además, que atendiendo a la prueba de la estructura cónica que realizábamos, se
tiene que las fibraciones que obtenemos son difeomorfas independientemente de la elección de
ε > 0 y δ > 0 que realicemos (siempre que estos cumplan las propiedades necesarias que hemos
revisado).

24



Capítulo 3

Topología de la fibra de Milnor y el link

En este capítulo pasaremos a estudiar la topología de la fibra de Milnor (definición 2.6.2) y del
link (definición 1.4.1). Dada una hipersuperficie de Cn singular en el origen el objetivo consiste
en probar los siguientes resultados.

Teorema 3.0.1. La fibra de Milnor tiene el tipo de homotopía de un CW-complejo finito de
dimensión n− 1.

Teorema 3.0.2. Si n ≥ 3 el Link(f, 0) es un espacio (n− 3)-conexo.

Esto significa que sus grupos de homotopía son todos triviales hasta orden n− 3. El caso n = 3
significa que el link es conexo, y el caso n = 4 que es conexo y simplemente conexo. Para el caso
con n = 2 el link no tiene por qué ser conexo. De hecho, en el primer capítulo veíamos que para
la hipersuperficie singular en el origen contenida en C2 definida por los ceros de f(x, y) = xy, el
Link(f, 0) era el enlace de Hopf, que no es conexo.

Para probar los resultados que acabamos de enunciar, se hace uso de forma importante de la
teoría de Morse para funciones reales. Por ello, comenzamos el capítulo revisando los contenidos
más importantes de dicha teoría, para después pasar a demostrar estos enunciados.

3.1. Teoría de Morse

La teoría de Morse permite reconstruir la topología de una variedad diferenciable M a partir de
una función diferenciable f : M → R con puntos críticos no degenerados, a la que llamaremos
función de Morse. A estos puntos críticos se les asignará un número llamado índice de Morse,
que influirá en la reconstucción de la topología. Dada una variedad diferenciable M siempre
existe una función de Morse como la anterior cuyos puntos críticos tienen valores distintos entre
sí. Además, se puede obtener deformando una función diferenciable arbitraria f : M → R.
En particular, las funciones de Morse son densas en C2(M,R) con la topología adecuada [14].
Desarrollemos los conceptos que acabamos de mencionar con un poco más de profundidad.

Los puntos críticos de una aplicación f : M → N diferenciable entre dos variedades diferenciables
son aquellos en los que la matriz Jacobiana no alcanza el rango máximo que puede tener como
aplicación lineal entre los tangentes. Por tanto, con la primera derivada podemos identificar
dichos puntos críticos. Por su lado, la segunda derivada nos permitirá establecer una clasificación
entre los mismos.

Definición 3.1.1. Un punto crítico x0 ∈ M de una función diferenciable f : M → R se
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denomina no degenerado si y sólo si la Hessiana de la función en dicho punto es no degenerada.
Es decir, cuando se verifica:

Hf,x0(X,Y ) = 0, ∀ Y ∈ Tx0M ⇔ X = 0,

con Hf,x0(X,Y ) la hessiana de f en x0 evaluada en dos vectores del tangente Tx0M .

Definición 3.1.2. Una función diferenciable f : M → R es una función de Morse si y sólo si
todos sus puntos críticos son no degenerados.

Veamos cómo hacer más manejable este concepto. Sea un sistema de coordenadas local (x1, ..., xm)
en un entorno de x0 ∈M de modo que xi(x0) = 0,∀i = 1, ...,m. Entonces, dos campos tangentes
a la variedad X e Y cualesquiera tienen expresión local dada por:

X =
∑
i

Xi∂xi , Y =
∑
j

Y j∂xj .

En esta expresión, {∂xi} denota la base de los espacios tangentes dada por los campos coorde-
nados. De esta manera tenemos también una expresión local para la Hessiana, pues:

Hf,x0(X,Y ) =
∑
i,j

HijX
iY j , Hij := Hf,x0(∂xi , ∂xj ).

Y así, un punto crítico x0 es no degenerado si y sólo si det(Hij) 6= 0.

Además, la Hessiana expresada en este sistema de coordenadas local nos permite definir una
función en un entorno de x0 dada por:

Hf,x0(x) =
∑
i,j

Hijx
ixj ,

la cual aparece en el desarrollo de Taylor de f en x0, de la manera siguiente

f(x) = f(x0) +
1

2
Hf,x0(x) +O(3).

De hecho, existe un sistema de coordenadas en torno a cada punto crítico en el que la función
de Morse adquiere la expresión del polinomio cuadrático dado por la Hessiana.

Teorema 3.1.1. Sea f : M → R una función diferenciable, m = dimM y x0 ∈ M un punto
crítico no degenerado de f. Entonces, existe un entorno abierto U de x0 en M y un sistema local
de coordenadas (x1, ..., xm) en U de modo que

xi(x0) = 0, ∀i = 1, ...,m & f(x) = f(x0) +
1

2
Hf,x0(x), ∀x ∈ U.

La prueba de este resultado, que es fundamental en esta teoría, puede consultarse en [14] (teorema
1.12). Con esto, definamos uno de los conceptos fundamentales de la Teoría de Morse: el índice
de Morse de un punto crítico. Para ello, es preciso primero recordar el siguiente resultado de
álgebra lineal.

Sea V un espacio vectorial real de dimensión finita y g : V ×V → R una forma bilineal simétrica
no degenerada. Entonces, existe al menos una base del espacio (e1, ..., en) de manera que para
cada vector: v =

∑
i v
iei se tiene

g(v, v) = −
(
|v1|2 + ...+ |vλ|2

)
+ |vλ+1|2 + ...+ |vn|2.
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El entero λ es independiente de la base y se denomina índice de g. Se define también como la
dimensión del mayor subespacio vectorial V− ⊂ V que verifica que g restringida al mismo es
definida negativa.

Definición 3.1.3. Sea x0 un punto crítico no degenerado de la función diferenciable f : M → R.
Se define su índice de Morse, denotado por λ(x0), como el índice de la Hessiana Hf,x0 .

Con esto, se deduce del teorema 3.1.1.

Lema 3.1.1 (de Morse). Si x0 es un punto crítico no degenerado de índice λ de una función
diferenciable f : M → R, entonces existe un sistema local de coordenadas (x1, ..., xm) en un
entorno de x0, de modo que xi(x0) = 0, ∀i y que además verifica

f = f(x0)−
λ∑
i=1

(xi)2 +

m∑
j=λ+1

(xj)2.

Visto esto, dada una función f : M → R diferenciable se define para cada a ∈ R:

Ma = {x ∈M : f(x) ≤ a}.

La idea en que se basa la teoría de Morse es que al aumentar a de manera continua en un
conjunto de valores regulares, la topología de Ma no varía. Este resultado se formaliza en el
siguiente teorema.

Teorema 3.1.2. Sea f : M → R una función diferenciable. Sean a < b y supongamos que
f−1([a, b]) = {x ∈M : a ≤ f(x) ≤ b} es compacto y no contiene puntos críticos de f . Entonces
Ma es difeomorfo a M b. Además, Ma es un retracto de deformación de M b, luego la inclusión
Ma →M b es una equivalencia homotópica.

La idea de la demostración reside en aplastarM b hasta convertirlo enMa a través de trayectorias
ortogonales a las hipersuperficies f = cte. El siguiente resultado clave de la teoría de Morse
describe con precisión cómo son estos cambios para los puntos críticos no degenerados. De esta
manera, a partir de una función de Morse sobre una variedad podemos recuperar la topología
de la misma. Para entender este resultado es preciso conocer antes las siguientes nociones.

Definición 3.1.4. Denotamos por Dn a la bola cerrada de dimensión n, definida por Dn :=
{x ∈ Rn : ‖x‖ ≤ 1}. Se denomina n-celda a cualquier espacio homeomorfo a dicha bola.

Por ejemplo, el intervalo [−1, 1] es una 1-celda, pues coincide con D1 = {x ∈ R : |x| ≤ 1}.
Una bola cerrada de radio arbitrario también es trivialmente una celda de la dimensión que
corresponda. Adjuntar n-celdas es una técnica que se emplea mucho en topología algebraica
para obtener un nuevo espacio topológico a partir de otro conocido. Esto consiste en, dado un
espacio topológico X y una función continua ϕ : ∂Dn → X, considerar, a partir de la unión
disjunta de X y la n-celda, el espacio cociente dado por:

X t Dn

∼ϕ
,

con ∼ϕ la relación de equivalencia que induce la función ϕ entre la frontera de la bola y su
imagen en X: ϕ(x) ∼ x. Con esto, ya estamos en disposición de enunciar el siguiente resultado.

Teorema 3.1.3. Sea f : M → R una función diferenciable y sea x ∈ M un punto crítico no
degenerado con índice λ. Supongamos que f(x) = c y que para cierto ε0 > 0, f−1([c− ε0, c+ ε0])
es compacto y no contiene más puntos críticos de x. Entonces, para cada 0 < ε < ε0 se tiene
que M c+ε tiene el tipo de homotopía de M c−ε tras adjuntarle una λ-celda.
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Como anunciábamos, este resultado significa que conociendo una función de Morse cuyos puntos
críticos tienen valores críticos distintos, y los índices de sus puntos críticos, podemos recuperar
el tipo de homotopía de la variedad adjuntando λ-celdas según corresponda. Así, finalmente se
puede demostrar el siguiente resultado, que es el que nosotros aplicaremos para poder calcular
el tipo de homotopía de las fibras de Milnor.

Teorema 3.1.4. Si f es una función de Morse en una variedad diferenciable M , y si cada
Ma es compacta, entonces M tiene el tipo de homotopía de un CW-complejo, con una celda de
dimensión λ por cada punto crítico de índice λ.

La prueba de estos tres últimos resultados puede encontrarse en los teoremas 3.1, 3.2 y 3.5 de
[12].

3.2. Prueba del teorema sobre el tipo de homotopía de las fibras

Con esto, nos encontramos en disposición de probar el teorema 3.0.1. Este nos dice que para
una hipersuperficie de Cn singular en el origen la fibra de Milnor Fθ tiene el tipo de homotopía
de un CW-complejo finito de dimensión n− 1.

La demostración de dicho resultado se basa en aplicar el teorema 3.1.4 a una función de Morse
basada en la restricción de |f | a la fibra Fθ y así concluir el resultado. Para poder hacer todo esto,
el primer paso consiste en identificar los puntos críticos de esa restricción. Para ello, resultará
útil considerar la función diferenciable aθ : Fθ → R, en la fibra Fθ, definida por:

aθ(z) = log |f(z)|.

Nótese que los puntos críticos de esta función son los mismos que los de la función |f | restringida
a Fθ. Veamos cómo caracterizar los mismos.

Lema 3.2.1. Los puntos críticos de la función aθ en Fθ son aquellos z0 ∈ Fθ tales que ∇C Log f(z0)
es un múltiplo complejo de z0.

Demostración. Por la definición del valor principal del logaritmo, tenemos que

log |f(z)| = RLog f(z),

luego la derivada direccional de log |f | en la dirección v (vector tangente a Fθ en z0) viene dada
por

R〈v,∇C Log f(z0)〉.

Por tanto, un punto z0 ∈ Fθ es un punto crítico de aθ(z) si cada derivada direccional de las
anteriores es nula, es decir, si ∇C Log f(z0) pertenece al complemento ortogonal euclídeo a Fθ en
z0. Obtengamos una base de dicho espacio. Como Fθ es una subvariedad de R2n con codimensión
2, necesitamos dos vectores linealmente independientes.

Supongamos que tenemos una curva z = γ(t) en Fθ que pasa por γ(t0) = z0 ∈ Fθ con vector
tangente γ′(t0) = v. Vimos en la demostración del teorema 2.4.1 que la derivada de la función θ
sobre el camino anterior venía dada por:

d(θ ◦ γ)

dt
(t0) = R〈γ′(t0), i∇C Log f(z0)〉 = R〈v, i∇C Log f(z0)〉.

En este caso, esta derivada debe anularse pues al restringirnos a Fθ la función θ es constante.
Así, i∇C Log f(z0) pertenece al complemento ortogonal que buscamos caracterizar.
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Por otro lado, como Fθ ⊂ Sε, un vector tangente a Fθ también es tangente a la esfera y cumple:

R〈v, z0〉 = 0.

De hecho, por el lema 2.4.2 hemos visto que los vectores z0 y i∇C Log f(z0) son linealmente
independientes si ε > 0 es suficientemente pequeño, y así, constituyen la base que buscábamos.
Con todo esto, z0 será un punto crítico de aθ si y sólo si ∇C Log f(z0) se puede expresar como
combinación lineal real de los vectores z0 e i∇C Log f(z0) y con esto se prueba el resultado.

El siguiente paso en la teoría de Morse consiste en computar la Hessiana en los puntos críticos de
la función que estemos estudiando, para poder calcular el índice de Morse. Para ello, observemos
que la Hessiana aplicada sobre un vector v del espacio tangente a Fθ en z0 se puede expresar a
partir de una curva γ(t) con vector velocidad γ′(t0) = v en γ(t0) = z0 a través de la derivada
segunda

d2(aθ ◦ γ)

dt2
(t0).

Veamos cómo se puede caracterizar esta derivada segunda utilizando que z0 es un punto crítico.

Lema 3.2.2. Si z0 ∈ Fθ es un punto crítico de aθ, la segunda derivada anterior está dada por

d2(aθ ◦ γ)

dt2
(t0) =

∑
R(Djkvjvk)− c|v|2,

donde (Djk) es una matriz de números complejos y c un número real positivo.

Demostración. Como nos estamos restringiendo a la fibra Fθ, se cumple que la función f sobre
el camino que consideramos γ(t), con γ(t0) = z0 y γ′(t0) = v, tiene argumento constante, de
modo que

aθ(γ(t)) = log |f(γ(t))| = Log f(γ(t))− iθ.

Derivando respecto a t obtenemos

d(aθ ◦ γ)

dt
(t) =

m∑
j=1

(
∂ Log f

∂zj
(γ(t))

)(
dγj
dt

)
,

y derivando de nuevo

d2(aθ ◦ γ)

dt2
(t) =

m∑
j,k=1

[(
∂2 Log f

∂zj∂zk
(γ(t))

)(
dγj
dt

)(
dγk
dt

)
+

(
∂ Log f

∂zj
(γ(t))

)(
d2γj
dt2

)]
.

Si ahora evaluamos en t = t0 y tenemos en cuenta que por la caracterización de los puntos
críticos de aθ estudiada previamente se cumple

∇C Log f(z0) = λz0

con λ ∈ C, renombrando

Djk =

(
∂2 Log f

∂zj∂zk
(z0)

)
podemos reescribir la ecuación para la derivada segunda de aθ como sigue:

d2(aθ ◦ γ)

dt2
(t0) =

m∑
j,k=1

Djkvjvk + 〈γ′′(t0), λz0〉.
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No olvidemos que puesto que la función aθ era real, también lo es su derivada. Multiplicando
ambos lados por λ y tomando la parte real se tiene

d2(aθ ◦ γ)

dt2
(t0)R(λ) =

m∑
j,k=1

R(λDjkvjvk) + |λ|2R〈γ′′(t0), z0〉.

Por otro lado, si derivamos dos veces la igualdad 〈γ(t), γ(t)〉 = cte. (recordemos que el camino
está contenido en la esfera de Milnor) y evaluamos en t = t0 encontramos:

〈γ′(t), γ(t)〉+ 〈γ(t), γ′(t)〉 = 0,

〈γ′′(t), γ(t)〉+ 2〈γ′(t), γ′(t)〉+ 〈γ(t), γ′′(t)〉 = 0 ⇒ R〈γ′′(t0), γ(t0)〉 = −|v|2.

Finalmente, sustituyendo esta última igualdad en la expresión que teníamos llegamos a

d2(aθ ◦ γ)

dt2
(t0)R(λ) =

m∑
j,k=1

R(λDjkvjvk)− |λv|2

y dividiendo entre R(λ), que debe ser positivo de nuevo por el lema 2.4.2, tenemos lo que
buscábamos.

Con esta caracterización, ya estamos en disposición de calcular el índice de Morse. Como en
este caso no podemos asegurar que los puntos críticos sean no degenerados, interpretamos el
índice de Morse en uno de estos puntos críticos z0 como la dimensión del mayor subespacio del
tangente a Fθ en z0 en el cual la forma cuadrática definida por la matriz de la Hessiana en z0 es
definida negativa. Se tiene el siguiente resultado.

Lema 3.2.3. El índice de Morse de aθ : Fθ → R en un punto crítico es mayor o igual que n−1.

Demostración. En el lema anterior se ha demostrado que la Hessiana de aθ en un punto crítico
z0 se podía expresar como la siguiente forma cuadrática en el espacio tangente a Fθ en z0

H(v) =
∑
R(Djkvjvk)− c|v|2,

con

Djk =

(
∂2 Log f

∂zj∂zk
(z0)

)
.

Veamos cuál es la dimensión del mayor subespacio sobre el cual la forma anterior es definida
negativa.

La clave en esta demostración es percatarse de lo siguiente: si v ∈ Tz0Fθ es tal que H(v) ≥ 0,
entonces H(iv) < 0. En efecto, como c es un número real positivo, que se cumpla H(v) ≥ 0
significa que el primer término de la suma anterior es positivo. De este modo, cambiar v por
iv lo cambia de signo, mientras que el segundo término continúa siendo negativo, lo cual nos
da H(iv) < 0. Además, como Fθ es una variedad compleja (tiene dimensión par 2n − 2) su
tangente es un espacio vectorial complejo, luego si v ∈ Tz0Fθ entonces iv ∈ Tz0Fθ y todo está
bien definido.

Atendiendo a esta distinción, se divide el espacio tangente en dos partes: Tz0Fθ = T0 ⊕ T1, de
modo que la Hessiana sea definida negativa sobre T0 y semidefinida positiva sobre T1. Así, el
índice de Morse I que buscamos coincide con la dimensión de T0. Sin embargo, por lo que se
acaba de ver, se tiene que iT1 debe estar contenido en T0, luego encontramos que:

I = dim(T0) ≥ dim(iT1) = dim(T1) = (2n− 2)− I,
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de donde obtenemos que I ≥ n − 1. Obsérvese que hemos utilizado que las fibras Fθ tienen
codimensión real 2, luego esta también es la codimensión de su tangente.

Finalmente, hacemos la comprobación de que todos los puntos críticos de la función aθ están
contenidos en un compacto de Fθ. Este punto cobrará relevancia algo más adelante, cuando
comprobemos que hay una función con una cantidad finita de puntos críticos no degenerados.

Lema 3.2.4. Existe una constante ηθ > 0 tal que todos los puntos críticos de aθ están en el
subespacio compacto de Fθ definido por |f(z)| ≥ ηθ.

Demostración. Se procede por reducción al absurdo. Supongamos que existen puntos críticos
en Fθ que verifican que |f(z)| es arbitrariamente próximo a cero. Entonces tiene que existir un
z0 ∈ Sε que sea límite de una sucesión de estos puntos críticos y de manera que f(z0) = 0. En
ese caso, nos encontramos en una situación como la de las hipótesis del Lema de Selección de la
Curva. Por usar las mismas notaciones que entonces, llamando:

U = {z ∈ Fθ : |f(z)|2 > 0}

y V al conjunto analítico dado por los puntos críticos de aθ, se tiene z0 ∈ V ∩ U . De este modo
podemos asegurar que existe una curva diferenciable γ(t) definida en un cierto intervalo [0, ε′) que
cumple γ(0) = z0, luego |f(γ(0))| = 0 y que toma valores en puntos críticos de aθ(z) = log |f(z)|
si t > 0. Esto último implica que aθ debe ser constante sobre la curva, luego también debe serlo
|f(z)|, que es estrictamente positivo en Fθ. Esto impide que la norma tienda a 0 al acercarnos a
z0, lo que completa la prueba.

Recapitulemos lo que hemos conseguido hasta ahora y veamos qué nos queda por conseguir.
Hemos conseguido caracterizar los puntos críticos de aθ, que son los mismos que los de |f |,
y calcular su índice de Morse. También hemos comprobado que todos estos puntos críticos se
encuentran en un subconjunto compacto de Fθ. Sin embargo, no podemos asegurar que aθ o |f |
sean funciones de Morse, es decir, cuyos puntos críticos sean todos no degenerados. Para poder
solucionar este punto recurrimos al siguiente resultado que se puede encontrar en [13].

Teorema 3.2.1. Sea g una función real de clase C∞ sobre una variedad diferenciable M . En-
tonces, para cada entorno N de los puntos críticos de g existe un función real Φ en la variedad
de clase C2 de manera que sus derivadas primera y segunda convergen uniformemente en los
compactos de M a las derivadas primera y segunda de g; y de manera que

g = Φ en M −N,

teniendo Φ a lo sumo puntos críticos no degenerados en N .

Atendiendo a este, podemos asegurar lo siguiente con respecto a las funciones con las que estamos
trabajando:

Lema 3.2.5. Existe una función diferenciable (de clase C2) dada por

sθ : Fθ → R+

de modo que todos los puntos críticos de sθ son no degenerados, tienen índice de Morse mayor
o igual que n− 1 y tal que

sθ(z) = |f(z)|

para puntos z con |f(z)| < ηθ para una cierta constante ηθ > 0.

31



Demostración. El único punto que no se sigue de aplicar el teorema anterior es el concerniente
al índice de los puntos de Morse. Este se deduce de la convergencia uniforme de las derivadas
primera y segunda. Bajo estas hipótesis se puede asegurar (ver, por ejemplo, el lema 22.4 de
[12]) que el índice de Morse de los puntos críticos de la función sθ debe ser mayor o igual que el
de los puntos críticos de |f |, para los cuales ya habíamos visto que eran mayores o iguales que
n− 1.

Además, como hemos probado que todos los puntos críticos de la función aθ (que son los mismos
que los de |f |) verifican |f(z)| ≥ ηθ para una cierta constante ηθ > 0, se tiene que los valores
críticos de esta función |f | están acotados inferiormente y también se cumple la última condición:
sθ y |f | deben coincidir para puntos z ∈ Fθ con |f(z)| arbitrariamente próximo a cero.

Como los puntos críticos de sθ son no degenerados se puede comprobar que son puntos aislados.
Para dicha comprobación se puede usar por ejemplo el lema de Morse (lema 3.1.1), pues compu-
tando el gradiente de una función de Morse en dichas coordenadas, se observa que el único cero
del mismo en un entorno de cada punto crítico es precisamente dicho punto crítico. Además, los
puntos críticos están todos en un subespacio compacto de Fθ, como ocurría con los de aθ pues la
primera derivada converge uniformemente a la de esta función. De este modo, podemos asegurar
que sθ tiene solo una cantidad finita de dichos puntos críticos.

Con todo, ya estamos en disposición de probar el teorema 3.0.1 sobre el tipo de homotopía de
la fibra de Milnor.

Demostración (del teorema 3.0.1). Prácticamente ya hemos hecho todo el trabajo necesario
para llegar a una función de Morse sobre la que poder aplicar el teorema 3.1.4. Las hipótesis del
mismo consisten en encontrar una función g diferenciable real sobre nuestra variedad Fθ, cuyos
puntos críticos sean no degenerados y de manera que los conjuntos:

Ma = {z ∈ Fθ : g(z) ≤ a}

sean compactos. En nuestro caso, basta con tomar

g(z) = − log sθ(z)

que es una función diferenciable y real, y que hereda los puntos críticos no degenerados de sθ.
Además, las subvariedades Ma son compactas pues g es propia y está acotada inferiormente.

Finalmente, puesto que el índice de Morse I de los puntos críticos de sθ y por tanto los de log sθ
es mayor o igual que n−1, se tiene que el índice de Morse de − log sθ es 2(n−1)−I ≤ n−1. Con
esto, aplicando el teorema 3.1.4 se tiene que Fθ tiene el tipo de homotopía de un CW-complejo
de dimensión menor o igual que n − 1, compuesto por la adjunción de una celda de dimensión
menor o igual que n− 1 por cada punto crítico de g.

3.3. Prueba del teorema sobre la topología del link

Gran parte de los resultados que acabamos de desarrollar se pueden utilizar para demostrar el
teorema 3.0.2, y esto es lo que haremos en esta sección.

Se busca comprobar para el germen de una hipersuperficie de Cn singular en el origen y dado
ε > 0 un radio de Milnor de dicho germen, para n ≥ 3 se tiene que el Link(f, 0) es un espacio
(n− 3)-conexo.

Demostración (del teorema 3.0.2). Sea Nη el entorno de Link(f, 0) en Sε dado por:

Nη = {z ∈ Sε : |f(z)| ≤ η} = Sε ∩ f−1(Dη).
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Consideramos la función

a : Sε − Link(f, 0)→ R, a(z) = log |f(z)|,

que restringida a cada fibra nos da la función aθ con la que hemos trabajado en la sección
anterior. Siguiendo exactamente la prueba del lema 3.2.4 se puede afirmar que existe un η > 0
suficientemente pequeño tal que todos los puntos críticos de a(z) satisfacen |f(z)| ≥ η. De este
modo a(z) no tiene puntos críticos en el Nη asociado al η > 0 que acabamos de encontrar, y esto
implica que Nη es una variedad diferenciable con borde que se puede ver como los conjuntos de
nivel correspondientes.

Por otro lado, podemos afirmar también que los puntos críticos de la función a(z) tienen todos
índice mayor o igual que n− 1. Dicho índice es la dimensión del mayor subespacio del tangente
en el que la hessiana es definida positiva. Como aθ = a|Fθ , los puntos críticos de aθ tienen índice
mayor o igual que n − 1 y dado z0 ∈ Sε − Link(f, 0) se tiene Tz0Fθ ⊂ Tz0Sε se debe cumplir
lo que enunciábamos. Así, aplicando de nuevo el teorema 3.2.1, en este caso a la función a(z),
podemos afirmar que existe una función de Morse

s : Sε − Link(f, 0)→ R+

cuyos puntos críticos no degenerados tienen índice mayor o igual que n−1 y tal que s(z) = |f(z)|
cuando |f(z)| es suficientemente próximo a cero.

Si consideramos la función s(z) restringida a Sε − N̊η se tiene entonces que la esfera tiene el
tipo de homotopía de un complejo formado adjuntando a Nη un conjunto finito de celdas de
dimensión mayor o igual que n − 1: una por cada punto crítico de la función s(z) en Sε − N̊η.
Adjuntar celdas de dimensión ≥ n−1 no modifica los grupos de homotopía hasta orden ≤ n−3.
Por tanto:

πi(Nη) ∼= πi(Sε)

para i ≤ n− 3. Como estamos trabajando en n ≥ 3, estas esferas tienen dimensión 2n− 1 ≥ 5,
y por tanto sus grupos de homotopía son nulos hasta orden i ≤ 2n− 1, luego en particular para
orden i ≤ n− 3.

Para concluir la prueba basta con ver que Link(f, 0) es un retracto de deformación de su entorno
Nη. Esto se ve levantando el retracto de deformación que contrae el disco cerrado de radio η > 0
al origen. Así, πi(Link(f, 0)) ∼= πi(Nη) y tenemos lo que queríamos.
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Capítulo 4

Hipersuperficies con una singularidad
aislada

Todos los resultados que hemos obtenido hasta el momento son válidos para cualquier hipersuper-
ficie singular. Sin embargo, en caso de que estudiemos una hipersuperficie con una singularidad
aislada en el origen, se pueden extraer algunas conclusiones más que resultan interesantes. En
este capítulo, comenzaremos viendo en la sección 4.1 cómo se pueden combinar las condiciones
de transversalidad que hemos trabajado en el caso particular de singularidades aisladas. Poste-
riormente, en la sección 4.2 estudiaremos que en este caso, el teorema de fibración de Milnor
implica que la esfera de Milnor admite una descomposición de libro abierto con el link como
visagra. Finalmente, dedicaremos las últimas secciones a afinar el resultado sobre el tipo de
homotopía de las fibras. En este caso, se verifica el siguiente enunciado.

Teorema 4.0.1. Si (V (f), 0) tiene en 0 una singularidad aislada, entonces las fibras de Milnor
tienen el tipo de homotopía de un bouquet de esferas de dimensión n− 1.

Para demostrarlo, se hace uso de numerosas herramientas de topología algebraica. Aquí, primero
comprobaremos que las fibras tienen la homología de un punto para orden menor a n− 1, como
sucede con el bouquet. Posteriormente explicitaremos una inclusión de un modelo homotópico
del bouquet de esferas en la fibra, inclusión que resultará ser una equivalencia homotópica.
No comprobaremos que se tiene dicha equivalencia homotópica, pues involucra herramientas de
homología algo alejadas de las que venimos usando en el trabajo. Sin embargo, esta sería la
forma de terminar la demostración del lema 4.0.1.

4.1. Condiciones de transversalidad

Antes de nada, merece la pena ver cómo en el caso de singularidades aisladas se pueden combinar
la proposición 1.2.1 (que sólo es válida en este caso) y el lema 2.5.1 para obtener un resultado
más fuerte que será muy útil en las demostraciones del capítulo.

Recordemos primero estos resultados. Sea el germen de una hipersuperficie (V (f), 0) con una
singularidad aislada en el origen. La proposición 1.2.1 nos asegura que para ε > 0 radio de
Milnor, la hipersuperficie V (f) interseca transversalmente a la esfera de Milnor Sε. Por su lado,
el lema 2.5.1 nos dice que para dicho radio de Milnor, existe un δ > 0 suficientemente pequeño
tal que para cada t ∈ C con 0 < |t| ≤ δ la fibra f−1(t) interseca transversalmente a Sε. Poniendo
en conjunto ambos resultados tenemos que podemos incluir la fibra del 0 en el segundo lema.
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Lema 4.1.1. Si (V (f), 0) tiene una singularidad aislada en 0, dado un radio de Milnor ε > 0
existe un δ > 0 suficientemente pequeño tal que para cada t ∈ Dδ la fibra f−1(t) interseca
transversalmente a Sε.

El poder incluir esta fibra tiene una consecuencia importante.

Lema 4.1.2. En las hipótesis anteriores, f−1(Dδ) ∩ Sε es difeomorfo a Dδ × Link(f, 0). En
particular, es una variedad diferenciable con borde.

Es más, el difeomorfismo g entre ambos espacios hace conmutativo el siguiente diagrama:

f−1(Dδ) ∩ Sε Dδ × Link(f, 0)

Dδ

g

f
π1

Demostración. Por las hipótesis, tenemos transversalidad de las fibras f−1(s) con s ∈ Dδ y la
esfera Sε, luego f restringida a f−1(Dδ)∩Sε es una submersión. Así, al ser también una aplicación
propia (continua en un dominio compacto) tenemos que es una fibración localmente trivial sobre
su imagen, que es Dδ. Además, como el disco es contractible, de hecho podemos asegurar que es
una una fibración trivial. De ahí se deduce que f−1(Dδ) ∩ Sε es difeomorfo al producto Dδ × F
con F una de las fibras de la aplicación f , que son todas difeomorfas entre sí. En particular si
consideramos la fibra dada por f−1(0) ∩ Sε = Link(f, 0) se tiene el resultado.

Ante esto, se deduce el siguiente resultado..

Lema 4.1.3. El espacio Fθ ∩
(
f−1(Dδ) ∩ Sε

)
es una subvariedad con borde difeomorfa a [0, δ]×

Link(f, 0).

Demostración. Basta con tomar restricciones en el diagrama conmutativo anterior para un
θ ∈ R fijo

Fθ ∩
(
f−1(Dδ) ∩ Sε

)
{ρeiθ : ρ ∈ [0, δ]} × Link(f, 0)

{ρeiθ : ρ ∈ [0, δ]} ⊂ Dδ

g′

f π1

y tener en cuenta que son difeomorfos

{ρeiθ : ρ ∈ [0, δ]} ∼= [0, δ].

4.2. Estructura de libro abierto

Expondremos ahora una aplicación interesante del teorema de fibración de Milnor 2.4.1, para el
caso en que en 0 tengamos una singularidad aislada. Para ello es necesario introducir algunos
conceptos nuevos.

Definición 4.2.1. Una descomposición de libro abierto de una variedad diferenciableM consiste
en una subvariedad N de codimensión 2 en M , denominada visagra, que verifica las siguientes
propiedades.

a) La subvariedad N se embebe en M con fibrado normal trivial. En este contexto, el espacio
normal en cada punto se define como el complemento ortogonal de su espacio tangente.
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b) Además el complementario M − N admite una fibración diferenciable localmente trivial
sobre S1:

φ : M −N → S1,

que debe verificar lo siguiente. Consideremos un entorno tubular U de N enM , es decir, un
entorno de N difeomorfo a N ×D2, con D2 el disco en dimensión 2. Entonces la aplicación
φ restringida a U −N , que es difeomorfo a N × (D2 − {0}), debe coincidir con la función
argumento

(x, y)→ y

‖y‖
.

Las fibras de φ se denominan páginas del libro abierto, y como hemos visto en la definición de
fibración localmente trivial, son todas difeomorfas cuando M es conexa.

Además, cada página se compactifica añadiendo la visagra N . Esto se puede comprobar viendo
a que la clausura de cada página intersecada con U se obtiene añadiéndole el espacio N . Más
adelante lo probaremos para un caso concreto, aunque el procedimiento que veremos se puede
generalizar. Con estas definiciones, podemos afirmar los siguiente.

Proposición 4.2.1. Sea (V (f), 0) el germen de una hipersuperficie con f holomorfa y 0 una
singularidad aislada de dicha hipersuperficie. Si ε > 0 es un radio de Milnor de dicho conjunto
analítico en torno a 0, entonces la esfera de Milnor Sε admite una descomposición de libro abierto
con visagra el Link(f, 0).

Demostración. Esto se deduce casi de forma directa aplicando el teorema de la fibración de
Milnor 2.4.1. Como la singularidad es aislada, el link es liso, y tiene su dimensión bien definida.
El Link(f) tiene codimensión 2 en Sε pues

dim(Link(f)) = dim(V (f)) + dim(Sε)− 2n = dim(V (f))− 1 = 2n− 3.

Por el lema 1.2.1, a partir de un cierto radio ε > 0 la hipersuperficie V (f) es transversa a
la esfera Sε. Con esta hipótesis, el lema 4.1.2 nos permite concluir que el fibrado normal del
Link(f, 0) = Sε∩V (f) en Sε es trivial, y nos da la estructura de producto de un entorno tubular
f−1(Dδ) ∩ Sε del Link(f, 0). Por tanto, la fibración de Milnor φ = f

|f | cumple la propiedad b)
tomando U = f−1(Dδ) ∩ Sε.

Con el desarrollo que hemos elaborado, también es sencillo comprobar que las fibras de Milnor
se compactifican añadiéndoles el link. Está claro que Fθ ⊂ Fθ ∪ Link(f, 0). El lema 4.1.3 nos da
el otro contenido en la intersección con el U que explicitábamos antes.

4.3. Homología para orden menor que n− 1

Sea (V (f), 0) el germen de una hipersuperficie con una singularidad aislada en el origen. Sea
ε > 0 un radio de Milnor para dicho germen. En esta sección, el objetivo pricipal es probar el
siguiente resultado.

Proposición 4.3.1. La fibra de Milnor Fθ del teorema 2.4.1 tiene la homología de un punto
para órdenes menores a n− 1.

Demostración. Se debe comprobar que la fibra tiene por grupos de homología H0(Fθ) = Z y el
resto triviales hasta Hn−2(Fθ) (inclusive). Si tomamos los grupos de homología reducidos, basta
con comprobar que todos estos hasta el de orden n−2 son triviales. Para hacer esto, aplicaremos
el siguiente resultado que es un teorema importante de topología algebraica.
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Teorema 4.3.1 (de dualidad de Alexander). Si K es un subespacio propio de Sn compacto,
localmente contractible y no vacío, entonces se tiene que los grupos de homología reducidos
H̃i(Sn −K) son isomorfos a los grupos de cohomología H̃n−i−1(K) para cada orden i.

Observamos que sobre Fθ podemos aplicar el teorema de dualidad de Alexander, pues tenemos
que en efecto es un conjunto contenido en la esfera Sε de dimensión 2n− 1 compacto, no vacío,
y localmente contratible. Esto último se debe a que es una variedad diferenciable, localmente
difeomorfa a un cierto Rm, que es contráctil. A partir de esto tenemos que los grupos de homología
reducidos H̃i(Sε − Fθ) son isomorfos a los grupos de cohomología H̃2(n−1)−i(Fθ). Estos últimos
son triviales para valores de i tales que 2(n − 1) − i > n − 1 (es decir cuando i < n − 1) al
tener esta fibra el tipo de homotopía de un CW-complejo de dimensión n− 1. Así, los grupos de
homología reducida de Sε − Fθ son triviales para órdenes menores que n− 1.

Finalmente, comprobamos que Sε−Fθ tiene el mismo tipo de homotopía que la fibra Fθ. Esto se
debe a que dicho complementario es Sε − (Fθ ∪ Link(f, 0)), que está fibrado localmente sobre el
espacio S1 −{eiθ} que es contráctil. Así, la fibración es trivial y se tiene un difeomorfismo entre
Sε − Fθ y (S1 − {eiθ})× Fθ. Como este último espacio tiene el tipo de homotopía de Fθ (el otro
factor del producto se contrae a un punto) se tiene la equivalencia homotópica que buscábamos.
Con esto concluimos que Sε − Fθ tiene el mismo tipo de homotopía que la fibra Fθ. Así, sus
grupos de homología son isomorfos, y tenemos lo que queríamos.

Como decíamos anteriormente, el bouquet de esferas de dimensión n− 1 también verifica que su
homología para órdenes menores que n− 1 es la del punto. En efecto, si denotamos por

N∨
i=1

Sn−1
i

al bouquet de N esferas de dimensión n− 1, entonces se tiene que sus grupos de homología con
coeficientes en Z son:

Hk

(
N∨
i=1

Sn−1
i

)
=


Z si k = 0,⊕
N Z si k = n− 1,
0 si k 6= 0, n− 1.

Estos grupos se calculan utilizando sucesiones de Mayer-Vietoris.

4.4. Puntos críticos no degenerados o singularidades de Morse

Un procedimiento para estudiar singularidades consiste en deformarlas a otras más sencillas. El
prototipo de punto singular más sencillo es el dado por un punto crítico no degenerado. Para
funciones complejas, este se define como sigue.

Definición 4.4.1. Dada f : U → C con U ⊂ Cn un conjunto abierto. Un punto z0 ∈ U es un
punto crítico no degenerado de f si y solo si es un punto crítico tal que la hessiana de f en z0

es no degenerada.

Además, el lema de Morse que veíamos con anterioridad (lema 3.1.1), también se puede enunciar
para el caso complejo. Sin embargo, en esta nueva formulación hay un cambio significativo. Este
se encuentra relacionado con el hecho de que en el caso complejo no tiene sentido hablar de
índice de un punto crítico no degenerado, al no tener tampoco sentido el concepto de signatura
de una forma bilineal.
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Lema 4.4.1 (de Morse para funciones complejas). Si z0 es un punto crítico no degenerado de
una función diferenciable f : U ⊂ Cn → C, entonces existe un difeomorfismo local ϕ : (Cn, 0)→
(Cn, 0), tal que

f ◦ ϕ(z1, ..., zn) = f(z0) +
n∑
i=1

z2
i .

En particular, con esto se ve que los puntos críticos no degenerados son aislados.

Aplicando este resultado al estudio que estamos realizando, obetenemos una consecuencia im-
portante. Supongamos que tenemos el germen de una hipersuperficie (V (f), 0) con f una función
holomorfa que cumple f(0) = 0, que tiene un punto crítico no degenerado en el origen. Se cumple
lo siguiente.

Teorema 4.4.1. El tipo de homotopía de la fibra de Milnor en el tubo definida en 2.5.1 en torno
a un punto crítico no degenerado es el de una esfera de dimensión n− 1.

Demostración. Por el lema 4.4.1 podemos afirmar que para un entorno suficientemente próximo
al origen, por ejemplo, una bola de Milnor Bε con radio ε > 0 suficientemente pequeño, existe
un cambio de coordenadas φ definido en dicho entorno tal que

f ◦ φ(z1, ..., zn) =
n∑
i=1

z2
i =: g(z1, ..., zn).

Así, las fibras lisas de la función f restringida a dicha bola son difeomorfas al espacio:

Vs = g−1(s) ∩ Bε = φ−1(f−1(s)) ∩ Bε = {z ∈ Bε : z2
1 + ...+ z2

n = s},

con s 6= 0, pues el 0 es valor crítico. Nótese que estos espacios, para |s| = δ suficientemente
pequeño son las fibras de Milnor en el tubo (ver teorema 2.5.1). Como sabemos que todas estas
fibras son difeomorfas entre sí, basta con que nos fijemos en la fibra con s = δ real.

Dividiendo cada coordenada zk en sus componentes real e imaginaria, se tiene que para cada
punto (z1, ..., zn) ∈ Vδ:

n∑
k=1

z2
k =

n∑
k=1

(ak + ibk)
2 =

n∑
k=1

(a2
k − b2k) + 2i

n∑
k=1

akbk = δ ⇒
n∑
k=1

(a2
k − b2k) = δ,

n∑
k=1

akbk = 0.

Y además, como Vδ ⊂ Bε, se tiene
n∑
k=1

(a2
k + b2k) ≤ ε.

El espacio definido por estas ecuaciones es difeomorfo al fibrado tangente de la esfera de dimen-
sión n−1: TSn−1. Ello se debe a que si fijamos por ejemplo el vector de partes imaginarias dado
por (b1, ..., bn) ∈ Rn, combinando las ecuaciones con las sumas de cuadrados, tenemos que debe
cumplir

n∑
k=1

b2k ≤
1

2
(ε− δ)

luego (b1, ..., bn) está en un disco de dimensión n: Dn. El vector de partes reales (a1, ..., an) ∈ Rn
que le corresponde debe pertenecer al complemento ortogonal a este vector, que es un espacio
isomorfo a Rn. Además, por la igualdad de la suma de cuadrados, despejando la resta en las
componentes b2i , encontramos que (a1, ..., an) deberá estar sobre la esfera de dimensión n − 1.
Por tanto: (z1, ..., zn) ∈ Sn−1 ×Dn, siendo este espacio difeomorfo a TSn−1. El fibrado tangente
TSn−1 tiene el tipo de homotopía de la esfera Sn−1, al ser el disco contractible.
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Con esto, tenemos totalmente identificado el tipo de homotopía de las fibras en el tubo para el
caso de una singularidad aislada no degenerada: es el de la esfera de dimensión n− 1. Obsérvese
que esto es, en particular, un bouquet de esferas con una única esfera. Sin embargo, una función
f cualquiera no tiene por qué tener un punto crítico no degenerado en la singularidad que
estemos estudiando. Lo que haremos por tanto, será llevar una función general a otra cuyos
puntos críticos sí sean no degenerados: su morsificación.

4.5. Existencia de morsificaciones

Comenzamos introduciendo el concepto de morsificación. Sea f : (Cn, 0)→ (C, 0) el germen de
una función analítica con representante f : Bε → C definido al menos en la bola de Milnor Bε,
que cumple f(0) = 0.

Definición 4.5.1. Una morsificación de f es una deformación de dicha función, es decir, una
familia de aplicaciones analíticas fλ inducida por una aplicación diferenciable F : Bε× [0, 1]→ C
de manera que fλ(z) := F (z, λ) y f0 = f , que cumple que fλ|Bε tiene una cantidad finita de
puntos críticos y son todos no degenerados para todo λ ∈ (0, λ0], para un cierto λ0 > 0.

Para el caso en que tengamos una singularidad aislada en 0, podemos asegurar que existe una
morsificación con una forma concreta de la función que define la hipersuperficie. Para verlo,
necesitamos conocer el siguiente teorema.

Teorema 4.5.1 (de Sard). Dada f : Rn → Rm una función diferenciable, el conjunto de sus
valores críticos es de medida 0. Además, si f : Cn → Cm es analítica compleja y propia, entonces
el conjunto de valores críticos es un subconjunto analítico.

Teorema 4.5.2. Si (V (f), 0) tiene una singularidad aislada en 0 entonces existe una morsi-
ficación de f de la forma fλ = f − λ(a1z1 + ... + anzn) para cierto vector (a1, ..., an) ∈ Cn.
Además, se puede elegir el vector (a1, ..., an) de manera que los puntos críticos de fλ tengan
valores críticos distintos para cada λ.

Demostración. Aquí no probaremos la segunda parte de este teorema, por la cual se asegura
que la morsificación se puede escoger con sus valores críticos distintos dos a dos. La prueba de
este resultado se puede consultar en [5]. Veamos por tanto que los puntos críticos de la función
fλ del enunciado son todos no degenerados y constituyen un conjunto finito. Denotamos por
ga(z) := a1z1 + ...+ anzn.

Dada fλ := f − λga, sus puntos críticos son los puntos que pertenecen a df−1(λa). Además,
x ∈ df−1(λa) será un punto crítico no degenerado de fλ si |Hessf (x)| 6= 0 donde Hessf (x) es la
matriz Hessiana de f en x.

Como Hessf es la jacobiana de df , tenemos que f−λga tiene solo puntos críticos no degenerados
si todos los puntos de df−1(λa) son puntos regulares de df . Es decir: si λa es un valor regular
de df . Como el conjunto de valores críticos ∆ de df : Cn → Cn es, por el Teorema de Sard, un
conjunto analítico de codimensión positiva, podemos tomar un segmento en Cn con origen en
0 que no toque a ∆ − {0}. Sea a el otro extremo del segmento. Entonces para todo λ ∈ (0, 1]
tenemos que fλ = f − λga solo tiene puntos críticos no degenerados.

Además, cada función fλ tiene una cantidad finita de puntos críticos no degenerados. Ello se
debe a que los puntos críticos no degenerados son aislados, la prueba de esto es análoga a la del
caso real. Así, forman un conjunto discreto en el compacto dado por Bε, que debe ser finito

Concluimos la sección con la siguiente observación. En realidad, para la morsificación que hemos
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encontrado, podríamos haber considerado λ ∈ Dλ0 para λ0 > 0 suficientemente pequeño. Así, el
parámetro variaría en los complejos y no en el intervalo que veíamos, lo cual resultará útil en la
sección siguiente.

4.6. Tipo de homotopía de las fibras

Habiendo desarrollado todas las herramientas necesarias para ello, pasamos a construir la inclu-
sión que hemos comentado. Queremos comprobar que existe un modelo homotópico al bouquet
de esferas de dimensión n − 1, es decir, un espacio con el mismo tipo de homotopía que este
bouquet, contenido en la fibra de Milnor.

Sea f : (Cn, 0)→ (C, 0) el germen de una función analítica. Supongamos que tiene una singula-
ridad aislada en en el origen. Tomamos la morsificación que nos da el teorema 4.5.2, en la forma
fλ = f + λg. Consideramos la función

F : Bε × Dλ0 → Bε × Dλ0 , F (z, λ) := (F (z, λ), λ)

con F (z, λ) = fλ(z). El conjunto de sus puntos críticos es la unión de los puntos críticos de la
familia fλ con λ ∈ Dλ0 . En efecto, si consideramos la diferencial de F , obtenemos la siguiente
matriz jacobiana (

dfλ ∗
0 1

)
.

Así, los menores de esta matriz que se anulen y contengan elementos de la última fila, desarro-
llando el determinante por dicha fila, conllevan que se anule la parte del menor contenida en
dfλ.

Lema 4.6.1. Sobre esta morsificación, podemos afirmar que existen ε > 0, δ > 0 y λ0 > 0 tales
que se verifican las siguientes propiedades.

1. La fibra f−1
λ (s) es transversal a la esfera Sε para todo s ∈ Dδ y para todo λ ∈ Dλ0.

2. Los valores críticos de fλ están en el interior del disco Dδ para todo λ ∈ Dλ0.

3. La fibra de Milnor de f en el tubo dada por f−1(s) ∩ Bε es difeomorfa a f−1
λ (s) ∩ Bε para

todo λ ∈ Dλ0 y todo s ∈ ∂Dδ.

Demostración. Vamos viendo las propiedades una a una.

1. Para comprobar la transversalidad, procedemos como sigue. Sabemos que para F (z, 0) =
(f(z), 0) existen un ε > 0 y un δ > 0 tales que para cada t ∈ Dδ la fibra f−1(t) inter-
seca transversalmente a la esfera de Milnor Sε. Sea p ∈ f−1(Dδ) ∩ Sε un punto en dicha
intersección. La transversalidad en dicho punto es una propiedad abierta, luego existe un
entorno abierto Up en F−1

(Dδ × Dλ0) tal que si F (z, λ) = (s, λ) para (z, λ) ∈ Up, enton-
ces f−1

λ (s) interseca transversalmente a Sε en (z, λ). Así F es submersión, luego F (Up)
es abierto. Tomamos δp > 0 y λp > 0 tales que Dδp × Dλp ⊂ F (Up), por lo que f−1

λ (s)
también es transversal a Sε en los puntos de (s, λ) ∈ Dδp ×Dλp . Considerando los entornos
correspondientes a los Up que se obtienen restringiendo al espacio f−1(Dδ) ∩ S (tomando
λ = 0), tenemos un recubrimiento por abiertos del mismo. Como es un compacto, basta
con quedarse con una cantidad finita de estos. Tomando λ0 el mínimo de entre los λp y el
δ mínimo entre los δp que correspondan a los entornos seleccionados, se tiene el resultado.

2. Sabemos que existe el δ > 0 que cumple que

f |f−1(∂Dδ)∩Bε
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es una submersión. Ser submersión también es una propiedad abierta. Como antes, para
cada punto del tubo p ∈ f−1(∂Dδ) ∩ Bε consideramos el entorno Up de

F
−1

(∂Dδ × Dλ0)

para el que se mantiene la propiedad: F es submersión en dicho entorno. Consideramos los
λp > 0 y δp > 0 como antes. Nos quedamos con una cantidad finita por la compacidad del
tubo y tomamos los mínimos, redefiniendo si es necesario los λ0 > 0 y δ > 0 anteriores.

3. Finalmente, esta propiedad se obtiene a partir del teorema de Ehresmann 2.3.1 y de las
propiedades 1 y 2. Se considera la restricción:

F |
F
−1

(∂Dδ×Dλ0 )
.

Se observa que el espacio F−1
(∂Dδ × Dλ0) es una variedad con borde dado por

F
−1

(∂Dδ × Dλ0) ∩ (Sε × ∂Dλ0).

Como sabemos que los valores críticos de f están en el interior de Dδ para todo λ ∈ Dλ0
y por la condición de transversalidad sobre la esfera se tiene que F es submersión en el
interior del espacio. Que F sea submersión en el borde de la variedad también nos lo da la
propiedad 1 de transversalidad. Además, se tiene que es una función propia por ser continua
en un dominio compacto. Por el teorema de Ehresmann es una fibración localmente trivial,
y esto prueba lo que buscábamos.

Con estas preparaciones realizadas, pasamos a ver cómo es el modelo homotópico del bouquet
de esferas que vamos a incluir en la fibra de Milnor. La situación que vamos a describir a
continuación queda reflejada en la figura 4.1. Fijamos λ ≤ λ0. Supongamos que la morsificación
tiene N puntos críticos no degenerados para fλ con λ ∈ D∗λ0 . Llamamos pi con i = 1, ..., N
a dichos puntos críticos, y vi con i = 1, ..., N a los valores críticos que les corresponden, que
podemos suponer por el teorema 4.5.2 que son distintos dos a dos y están contenidos en Dδ.
Para cada uno de estos puntos críticos, podemos considerar su bola de Milnor centrada en pi
que denotamos por Bεi(pi) ⊂ Bε y el disco centrado en vi que le corresponde Dδi(vi) ⊂ Dδ para
establecer la fibración de Milnor en el tubo en torno a pi según teorema 2.5.1. Como los pi
son puntos críticos no degenerados, el tipo de homotopía de las fibras f−1

λ (si) ∩ Bεi para cada
si ∈ Dδi es el de una esfera de dimensión n− 1.

En el disco Dδ, escogemos un valor regular en la frontera s ∈ ∂Dδ. Trazamos caminos disjuntos
desde dicho punto s a cada uno de los valores regulares vi y que corten a ∂Dδi(vi) una sola vez.
Llamamos si al punto que se encuentra en dicha intersección. Así, dividimos los caminos en dos
partes: la primera, a la que denominamos αi, que va de s a si para cada i = 1, ..., N y la segunda,
a la que llamamos βi que va de si al valor crítico vi para cada i = 1, ..., N . Definimos:

Γ =
N⋃
i=1

αi, Γ =
N⋃
i=1

(αi ∪ βi).

Se cumple que fλ es una fibración localmente trivial restringida a f−1
λ (Γ) sobre Γ. Para verlo, se

aplica el teorema de Ehresmann como ya hemos hecho otras veces, donde la submersión sobre
la frontera se tiene gracias a las hipótesis de tranversalidad. Como Γ es un espacio contractible,
se tiene que de hecho, la fibración es trivial, luego el espacio tiene la estructura del siguiente
producto

f−1
λ (Γ) ∼= (f−1

λ (s) ∩ Bε)× Γ.
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Figura 4.1: Diagrama del modelo homotópico al bouquet de esferas contenido en la fibra de
Milnor.

Denominamos al modelo homotópico que nos interesa por Y . Definimos este como sigue. Deno-
minamos ∆i a un espacio homotópicamente equivalente a Sn−1 con ∆i ⊂ f−1

λ (si) ∩ Bεi , siendo
la inclusión una equivalencia homótopica. Fijamos q ∈ f−1

λ (∂Dδ) ∩ Bε. Sean α̃i levantamientos
de los caminos αi en la bola Bε, que cumplen αi = fλ ◦ α̃i. Podemos asumir, por la estructura
de producto que acabamos de ver, que uno de los extremos de estos caminos estará en q y el
otro estará sobre la fibra f−1

λ (si) ∩ Bεi para cada camino con i = 1, ..., N . Con estos elementos,
definimos

Y :=
N⋃
i=1

(α̃i ∪∆i) ⊂ f−1
λ (Γ).

Este espacio tiene el tipo de homotopía de un bouquet de N esferas de dimensión n − 1 por
construcción. Veamos por último que está contenido en un espacio con tipo de homotopía el de
la fibra f−1

λ (s) ∩ Bε.

Esto se debe a que, por ser Γ contractible, se verifica que (f−1
λ (s) ∩ Bε)× Γ tiene el mismo tipo

de homotopía que la fibra f−1
λ (s) ∩ Bε. Por tanto hemos construido Y un espacio con el tipo de

homotopía del bouquet de N esferas de dimensión n− 1 contenido en f−1(Γ), espacio que tiene
el tipo de homotopía de la fibra f−1

λ (s) ∩ Bε y esto concluye la prueba que buscábamos.

Como ya hemos comentado, se puede demostrar que esta inclusión que acabamos de encontrar
es de hecho una equivalencia homotópica. Para ello, se comprueba que la inclusión induce un
isomorfismo entre los grupos de homología de Y y de la fibra f−1

λ (s) ∩ Bε. Para ver que esto
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conlleva la equivalencia homotópica, se hace uso de los dos siguientes teoremas fundamentales
de topología algebraica.

Teorema 4.6.1 (de Whitehead). Sean X e Y dos CW-complejos conexos. Si una función con-
tinua f : X → Y induce isomorfismos f∗ : πn(X)→ πn(Y ) entre todos sus grupos de homotopía,
entonces f es una equivalencia homotópica.

Teorema 4.6.2 (de Hurewicz). Si un espacio X es (n − 1)-conexo con n ≥ 2, entonces los
grupos de homología reducida H̃i(X) son 0 para i < n y πn(X) es isomorfo a Hn(X).

Ambos teoremas se combinan en el siguiente corolario que es el que permite concluir el resultado.

Corolario 4.6.2.1. Una aplicación f : X → Y entre CW-complejos simplemente conexos que
induce isomorfismos entre sus grupos de homología f∗ : Hn(X) → Hn(Y ) para todo orden n es
una equivalencia homotópica.

Las pruebas y enunciados de estos resultados pueden consultarse en [7]. A la vista de estos, hay
que comprobar que los espacios son simplemente conexos, y al darnos la inclusión el isomor-
fismo entre de homología de la fibra y el bouquet, se concluye que constituye una equivalencia
homotópica. Esto nos conduce a un resultado importante.

Lema 4.6.2. El número N de puntos críticos no degenerados que aparecen al tomar una morsifi-
cación de una función holomorfa f : U → C con U ⊂ Cn abierto no depende de la morsificación,
y es siempre el mismo.

Esto se debe a que acabamos de ver que el tipo de homotopía de las fibras es el del bouquet
de N esferas de dimensión n − 1, y el tipo de homotopía de estas solo depende del germen
f : (Cn, 0) → (C, 0) que nos de la singularidad. En vista de este resultado, se tiene una última
definición.

Definición 4.6.1. Se define el número de Milnor del germen de una función analítica f :
(Cn, 0) → (C, 0), denotado por µ(f, 0), como el número de puntos críticos no degenerados que
aparecen en una morsificación cualquiera de f , en el sentido de la definición 4.5.1.
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Apéndice A

Algunas nociones básicas de conjuntos
analíticos complejos

El objeto de estudio del presente trabajo son las singularidades de conjuntos analíticos, es decir,
conjuntos definidos por los ceros de funciones holomorfas. En particular, nos interesa saber
cómo obtener información topológica local de las mismas utilizando herramientas geométricas y
algebraicas más accesibles.

A.1. Funciones holomorfas y el anillo de series convergentes

En primer lugar, es pertinente realizar algunos comentarios sobre cómo se materializan algunas
nociones relacionadas con funciones holomorfas en varias variables, con las cuales trabajaremos
constantemente a lo largo de este texto. En particular, nos interesa ver cómo podemos aplicar
argumentos algebraicos para trabajar con estas funciones, los cuales resultarán de gran utilidad
en las secciones siguientes.

Es bien conocido que si tenemos una función f : U → C, donde U ⊂ Cn es un conjunto abierto, es
equivalente decir que f es una función holomorfa a que f es una función analítica. Las funciones
analíticas en U son aquellas para las que, dado un punto x cualquiera de U , existe un entorno
V ⊂ U de x y una serie de potencias, la cual converge a f en V . Lo interesante de esta discusión
es que si consideramos p ∈ Cn fijo, resulta que las series de potencias que convergen en un
entorno de p (el cual puede depender de la serie) forman un anillo, que se denota por On,p.
En el caso particular de las series de potencias convergentes en un entorno del 0, denotamos
a este anillo por C{x}, C{x1, ..., xn} o simplemente On. No olvidemos que siempre podemos
llevar un punto p ∈ Cn al 0 vía un cambio de coordenadas lineal. Como ya hemos anunciado, en
este trabajo estudiaremos el comportamiento de funciones holomorfas en entornos de un punto
concreto, por lo que podremos trabajar con éstas como elementos del anillo anterior, y aplicar
argumentos relacionados con las propiedades de dicho anillo.

Por último, merece la pena señalar algunas de las propiedades útiles que verifica el anilloOn. Para
una exposición detallada de las mismas se puede consultar el capítulo 3 de [8], aquí simplemente
enunciaremos las dos siguientes. La primera, que este constituye un anillo noetheriano, es decir,
en el cual todos sus ideales son finitamente generados. Además, este es también un dominio de
factorización única, luego los elementos irreducibles del anillo son precisamente los primos, y la
descomposición en factores irreducibles anterior es única salvo multiplicación por unidades.
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A.2. Conjuntos analíticos

Habiendo revisado los conceptos de la sección anterior, podemos pasar a definir los espacios que
nos interesan: los conjuntos analíticos.

Definición A.2.1.

1. Un subconjunto X ⊂ Cn se dice localmente analítico si para cada punto p ∈ X existe
un entorno abierto Up ⊂ Cn de p y un conjunto finito de funciones holomorfas f1, ..., fs
definidas en Up de manera que

X ∩ Up = {z ∈ Up : f1(z) = ... = fs(z) = 0}.

A un conjunto de este tipo lo denominaremos V (f1, ..., fn).

2. Sea un U un conjunto abierto de Cn. Un subconjunto X ⊂ U se denomina subconjunto
analítico de U si X es localmente analítico, y cerrado en U .

3. Si directamente tomamos X ⊂ Cn localmente analítico y cerrado, podemos denominarlo
simplemente conjunto analítico. En este caso podemos asegurar que para cada p ∈ Cn
existe un entorno suyo Up de modo que X ∩ Up se puede definir como los ceros de un
conjunto finito de funciones holomorfas definidas en Up. Por ser X cerrado, en caso de que
p /∈ X, se puede escoger dicho entorno de modo que la intersección con X sea vacía, y por
ello podemos asegurar lo anterior.

El concepto de función holomorfa se extiende de forma natural para definirlas en estos conjuntos.

Definición A.2.2. Sea X un subconjunto analítico de U , con U ⊂ Cn abierto. Una función
f : X → C se dice que es holomorfa en X si para cada x ∈ X existe un entorno abierto V de x
en Cn tal que f |V ∩X sea la restricción de una función holomorfa en V .

Existe un tipo concreto de conjuntos analíticos en los que la topología local en torno a un punto
cualquiera es especialmente sencilla. Veamos cómo definirlos y cuál es esta topología.

Definición A.2.3.

1. Sean f1, ..., fn un conjunto de funciones holomorfas en un abierto U ⊂ Cn. Sea p ∈ U y
supongamos que f1(p) = ... = fn(p) = 0. Entonces, se denomina a {f1, ..., fn} conjunto de
funciones coordenadas en p si cumplen:

det

(
∂fi
∂zj

(p)

)
6= 0.

2. Un subespacio X ⊂ Cn es una variedad compleja de Cn si para cada p ∈ X existen un
entorno abierto de p, Up ⊂ Cn, y un conjunto de funciones coordenadas f1, ..., fn de p de
manera que, para algún m < n

X ∩ Up = {z ∈ U : f1(z) = ... = fm(z) = 0}.

Con estas definiones observamos que una variedad compleja como la anterior es un subespacio
de Cn que es localmente como Cm, es decir, tal que existe un biholomorfismo local entre ambos
espacios. En particular, la topología en un entorno de cualquier punto es la de dicho Cm. Estos
espacios son variedades diferenciales, siendo la condición de holomorfía más restrictiva que la
diferenciabilidad.
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A.3. Gérmenes de espacios analíticos y funciones analíticas

En esta última observación, por primera vez nos hemos acercado al verdadero objetivo de este
trabajo: conseguir describir topológicamente las inmediaciones de un punto en un conjunto
analítico.

Definición A.3.1. DadoX un espacio topológico y p ∈ X. Se define una relación de equivalencia
entre subespacios de X que contengan a p de la siguiente manera: dos de estos, denotados por
A y B, están relacionados si y solo si existe un entorno U de p tal que A ∩ U = B ∩ U .

A la clase de equivalencia de un conjunto A en p se le denomina germen de A en p, siendo A un
representante de dicha clase. Se denota a dicho germen por (A, p).

En efecto, se comprueba fácilmente que dicha relación es de equivalencia. Además, dados los
gérmenes (X,x), (Y, x) y (Z, x) de un espacio topológico, podemos definir la siguientes relaciones
entre ellos.

En primer lugar, decimos (X,x) ⊂ (Y, x) si existen representantesX de (X,x) e Y de (Y, x)
de modo que X ⊂ Y . Se puede comprobar que se tiene la igualdad entre los gérmenes si
se dan los dos contenidos, como es costumbre.

Si se cumple (X,x) ⊂ (Y, x) y (Z, x) ⊂ (Y, x), se define (X,x) ∩ (Z, x) como el germen de
X ∩ Z en x para cada par de representes X y Z de (X,x) y (Z, x) respectivamente.

De modo análogo, se define la unión de gérmenes como los anteriores (X,x) ∪ (Z, x).

Estas nociones nos interesan aplicadas al caso de los espacios localmente analíticos, es decir, los
espacios que localmente vienen dados por los ceros de ciertas funciones holomorfas.

Definición A.3.2. Un germen de un espacio analítico (X, p) es un germen en p de un espacio
analítico X de Cn.

Por ejemplo, veamos el caso de una hipersuperficie. Sean p ∈ Cn y f ∈ On,p, consideremos un
entorno abierto U de p en el cual f converja, y con este el subconjunto analítico de U dado por
V (f) := {z ∈ U : f(z) = 0}. Se define así el germen de la hipersuperficie analítica definida por
f al germen dado por (V (f), p).

Consideremos un ideal I = (f1, ..., fs) ⊂ On,p generado por las funciones holomorfas indicadas
en el paréntesis, se define el germen del espacio analítico dado por los ceros de las funciones del
ideal (V (I), p) como

(V (I), p) =
s⋂
i=1

(V (fi), p).

Se comprueba fácilmente que esta definición es independiente de la elección de generadores de
I.

Además, también podemos razonar a la inversa e identificar el ideal cuyas funciones nos permi-
ten definir un conjunto analítico dado en el sentido anterior. Dado (X, p) un germen de dicho
conjunto en p, se define el ideal de las funciones holomorfas que se anulan en él

I(X, p) = {f ∈ On,p : (X, p) ⊂ (V (f), p)}.

Nótese que cualquier ideal del anillo On,p es finitamente generado, y que el conjunto X es
independiente del conjunto de generadores que se escojan para representarlo mediante sus ceros.
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Finalmente, el Teorema de los Ceros de Hilbert o Nullstellensatz nos asegura que, tomando las
notaciones de los párrafos anteriores,

I(V (I), p) =
√
I,

es decir, que el ideal de las funciones holomorfas que se anulan en el conjunto analítico dado por
los ceros de las funciones en I es precisamente el radical de I.

Finalmente, definamos un tipo concreto e interesante de gérmenes de conjuntos analíticos.

Definición A.3.3. Sea (X,x) el germen de un espacio analítico. Entonces, se dice que es irre-
ducible si al expresar (X,x) = (X1, x) ∪ (X2, x), se tiene que o bien (X,x) = (X1, x) o bien
(X,x) = (X2, x).

Para cada germen de un espacio analítico se tiene una descomposición única salvo permutaciones
del tipo:

(X,x) = (X1, x) ∪ ... ∪ (Xr, x)

con (Xi, x) gérmenes irreducibles tales que (Xi, x) 6⊂ (Xj , x) si i 6= j. Estos gérmenes (Xi, x) se
denominan componentes irreducibles de (X,x).

Por otro lado, se pueden aplicar la noción de germen a las funciones entre conjuntos.

Definición A.3.4. Sean (X,x) e (Y, y) dos gérmenes de espacios topológicos. Se define el germen
de una función continua f : (X,x)→ (Y, y) como la clase de equivalencia de funciones f : U →
W con f(x) = y y donde U y W son representantes de (X,x) e (Y, y) respectivamente. Dos
aplicaciones de este tipo f1 : U1 → W y f : U2 → W se dicen equivalentes si coinciden en un
entorno abierto de x contenido en U1 ∩ U2.

Sabiendo esto, podemos considerar el caso particular de las funciones por las que nos estamos
interesando: las funciones analíticas.

Definición A.3.5. Sea (X,x) ⊂ (Cn, x) un germen de un conjunto analítico. Un germen de
una función analítica f : (X,x) → (C, y) es un germen de una aplicación f : (X,x) → (C, y)
que cumple que algún representante suyo es la restricción en X de una función analítica en un
entorno abierto de x ∈ Cn.

Se puede ver que los gérmenes de funciones analíticas sobre (X,x) forman un álgebra sobre C,
denotada por OX,x. Esta álgebra se denomina anillo de las funciones analíticas en (X,x). Se
tiene que si (X,x) ⊂ (Cn, x) es el germen de un conjunto analítico e I(X,x) el ideal que hemos
definido antes de las funciones que se anulan en X, entonces se puede ver OX,x como el cociente
siguiente:

OX,x =
On,x
I(X,x)

.

Si (X,x) es el germen de una variedad compleja en X (ver definición A.2.3), entonces, se puede
demostrar que existe un k ∈ {1, ..., n} tal que OX,x ∼= C{x1, ..., xk}.

A.4. Puntos singulares y puntos críticos

Pasamos a definir uno de los conceptos clave de este trabajo: los puntos singulares de un conjunto
analítico. Como comentamos anteriormente, la topología local en torno a un punto de una
subvariedad compleja es bien conocida (ver definición A.2.3): es simplemente la de un cierto Ck
contenido en Cn. Ello motiva la siguiente distinción.

48



Definición A.4.1.

Dado U ∈ Cn un conjunto abierto y X ⊂ U un subconjunto analítico. Un punto p ∈ X se
denomina punto regular o liso si existe un entorno abierto V de p en Cn de manera que
X ∩V sea una subvariedad compleja, esto es, la imagen vía una aplicación biholomorfa de
un abierto de un cierto Ck.

Si p no es un punto regular, decimos que es un punto singular o singularidad. Al conjunto
de puntos singulares de X lo denotaremos por Sing(X).

Esta definición apela a la existencia de una función biholomorfa que conecte un entorno del
conjunto analítico con un abierto de Ck. Como se puede leer en el capítulo 2 de [11], un conjunto
analítico nunca es una variedad diferenciable en un entorno de un punto. Sin embargo, sí podría
ser una variedad topológica como en el caso de curvas irreducibles (ver sección 1.4).

Es útil tener una forma más operativa de identificar los puntos singulares de un conjunto ana-
lítico. Para los ejemplos con los que trabajaremos aquí, los puntos singulares de los conjuntos
analíticos se corresponderán con los puntos críticos de las funciones holomorfas que utilizaremos
para definirlos.

Fijemos el concepto de punto crítico de una aplicación entre variedades. Sea una aplicación
diferenciable f : M → N entre dos variedades diferenciables M y N . La diferencial de f en cada
punto p ∈M define una aplicación lineal entre los tangentes:

dpf : TpM → Tf(p)N,

cuya expresión viene dada por la jacobiana de f evaluada en el punto p. A partir de esta se
establecen las siguientes definiciones.

Definición A.4.2.

Un punto p ∈M se denomina punto crítico de f si y solo si se cumple:

rank(dpf) < mı́n(dimM,dimN).

Al conjunto de los puntos críticos de f lo denotamos Σf .

Si consideramos una aplicación f : Cn → Cm holomorfa, se tiene que Σf constituye un
conjunto analítico. Ello se debe a que se puede definir por los ceros de las funciones que
definen todos los menores de orden mı́n(dimM, dimN) de la jacobiana.

U punto q ∈ N se denomina valor crítico de f si f−1(q) contiene un punto crítico de f .
Al conjunto de valores críticos, es decir a f(Σf ), se le denota comúnmente Crit(f).

Supongamos que tenemos un conjunto analítico X definido por los ceros de un conjunto finito
de funciones holomorfas {f1, ..., fm}, las cuales están definidas de un abierto U ⊂ Cn en C.
Tomando f = (f1, ..., fm) : U → Cm, por el Teorema de la Función Implícita podemos concluir
que si p ∈ X no es un punto crítico de f , entonces en un entorno de dicho punto X es una
subvariedad compleja, y en particular diferenciable, luego dicho punto es regular en el sentido
que definíamos antes.

Ahora, para convertir esta implicación en una equivalencia, se debe llevar algo de cuidado.
Veámos a qué nos referimos para el caso de una hipersuperficie X = V (f), con f : U ⊂ Cn → C
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una función holomorfa. Queremos identificar los puntos singulares de X con X ∩ Σf para una
f como la anterior cuyos ceros definan a X. Nos encontramos con que considerándolos como
conjuntos V (f) = V (f2), luego también podríamos considerar f2 como la función que define
X. Sin embargo, cada punto de V (f2) es un punto crítico de f2, luego en este caso, vemos
que el conjunto Σf2 es “demasiado grande”. Esto sucede así siempre que haya factores repetidos
en la posible descomposición en factores primos de f (recordemos que la podemos ver como
un elemento de On que es un dominio de factorización única). De esta manera, nos interesan
funciones analíticas tales que su descomposición en factores primos f = fk11 · ... · fkmm , cumpla
que ki = 1 para cada i = 1, ...,m. En este caso, decimos que f es reducida, y podemos identificar
los puntos singulares de V (f) con V (f) ∩ Σf .

Para concluir la sección, merece la pena comentar que con estas definiciones, si estamos conside-
rando un espacio analítico en el cual todos sus puntos son lisos tiene sentido hablar del concepto
de dimensión de la variedad compleja. Por ejemplo, tomando la dimensión topológica, esta se
correspondería con la dimensión del Ck con respecto al cual el espacio es homeomorfo local-
mente. Además, esta dimensión, como sucede para el caso real, es constante en las componentes
conexas del espacio, que se corresponden con las componentes irreducibles que definíamos antes.
En el caso general en que X es un conjunto analítico, se puede demostrar que X − Sing(X) es
denso. De este modo, para cada componente irreducible Xi se tiene que Xi − Sing(Xi) es denso
y conexo, luego se puede definir su dimensión correctamente.
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