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Introducción a la f́ısica de los Agujeros Negros. Extensión maximal y singulari-
dades de la geometŕıa de Schwarzschild.

Resumen:

En este trabajo, se pretende entender en profundidad el modelo de agujero negro que describe la
geometŕıa de Schwarzschild. El elemento de ĺınea que caracteriza esta geometŕıa fue la primera
solución que se encontró para las ecuaciones de Einstein en vaćıo. Dicha métrica describe la geo-
metŕıa del espacio-tiempo en torno a un objeto masivo estático y con simetŕıa esférica. Veremos
que el sistema de coordenadas que escojamos para expresar dicha solución es fundamental para en-
tender correctamente los fenómenos que se describen. Aśı, a lo largo del trabajo, se irá trabajando
con diferentes cambios de coordenadas que nos permitan estudiar la fenomenoloǵıa que aparece en
esta solución. Esto nos servirá para introducir diferentes aspectos relacionados con la naturaleza
de los agujeros negos, por ejemplo, la noción de horizonte de eventos, los agujeros de gusano o las
singularidades espacio-temporales.

Abstract:

In this work, we intend to understand the black hole solution described by Schwarzschild’s geometry.
The line element that characterise that geometry was the first solution found for Einstein’s equations
in empty space. Its metric tensor describes the space-time geometry around a massive object with
spherical symmetry. We will study that the coordinates system in which we express the solution is
crucial to properly understand the phenomena that appear. Therefore, in this work we will change
the coordinates several times so that we can achieve to describe the physical situations concerning
the Schwarzschild’s solution. This will allow us to encounter and examine interesting phenomena
regarding the black hole’s nature, such as the event horizon, wormholes or space-time singularities.
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1. Introducción

Los agujeros negros constituyen uno de los fenómenos en los que se pone a prueba de manera directa
la teoŕıa de la Relatividad General, y su estudio ha dado lugar al descubrimiento de numerosas
predicciones sorprendentes. Durante mucho tiempo, se consideró que estos eran un mero artificio
matemático que no teńıa cabida en la realidad. Sin embargo, en la década de los 60, con el descu-
brimiento de objetos compactos fruto del colapso gravitacional como las estrellas de neutrones y
púlsares [1], se empezó a contemplar la posibilidad de que estos fueran una realidad f́ısica. A d́ıa
de hoy, como veremos en este trabajo, cada vez parece haber menos dudas de que este fenómeno
existe en nuestro Universo, y los misterios que rodean su naturaleza siguen proporcionando nuevas
preguntas y retos para la F́ısica.

Nosotros aqúı volveremos a los oŕıgenes de la cuestión y estudiaremos la geometŕıa de Schwarzschild,
que fue la primera que dio una descripción matemática de una situación que podŕıamos identificar
con la presencia de un agujero negro. Esta solución se obtiene para un modelo muy idealizado, que
realmente no se corresponde con la realidad f́ısica de los agujeros negros que se han observado.
Otras geometŕıas, que incluyen la posibilidad de que el cuerpo central esté cargado o se encuentre
en rotación, se aproximan más a dicha realidad. Sin embargo, en esta solución de Schwarzschild se
encuentran reflejados los fenómenos más importantes relacionados con la naturaleza de los agujeros
negros: el horizonte de eventos y la singularidad espacio-temporal. La elección de estudiar esta
geometŕıa se debe a que su sencillez resulta muy útil a la hora de realizar las disquisiciones teóricas
que desarrollaremos en el trabajo y de justificar las intuiciones f́ısicas que emanan de dicha teoŕıa.

Para conseguir todo esto, se estructura este trabajo de la siguiente manera. En la sección 2 se obtiene
con detalle la geometŕıa de Schwarzschild, que es la que describe el modelo que nos interesa. Además,
se estudian las particularidades del elemento de ĺınea que la caracteriza, cuyos comportamientos
singulares se corresponden precisamente con el horizonte de eventos y la singularidad espacio-
temporal. Las dos secciones siguientes se orientan a buscar un sistema de coordenadas que consiga
describir bien la geometŕıa en las inmediaciones del horizonte de eventos, pues, como veremos, la
solución propuesta por Schwarzschild no lo consigue. Se obtienen aśı las soluciones de Eddington-
Finkelstein (en la sección 3) y de Kruskal-Szekeres (en la sección 4). En este último modelo se
describe por entero la geometŕıa de Schwarzschild y podremos detallar todos los fenómenos que
predice. Finalmente, en la sección 5 se estudia el concepto de singularidad espacio-temporal. Esta
cuestión es altamente no-trivial, aśı que en este trabajo se abordará por medio de una discusión
conceptual de los puntos más importantes de la misma relacionados con el estudio de la geometŕıa
de Schwarzschild. Revisaremos cuáles son las patoloǵıas que nos permiten caracterizar la existencia
de una singularidad, para concluir su presencia en el interior del agujero negro de nuestro modelo.

2. Geometŕıa de Schwarzschild

En esta primera sección se estudiará la métrica de Schwarzschild, con el objetivo de comprender
algunas situaciones que aparecen en la geometŕıa que describe. Como ya hemos comentado, esta
constituye la primera solución a las Ecuaciones de Einstein en vaćıo encontrada históricamente: fue
obtenida por Karl Schwarzschild en 1916 [2], tan solo unos meses después de que el propio Einstein
publicara estas ecuaciones.

2.1. Métrica de Schwarzschild

La métrica de Schwarzschild pretende describir el campo gravitatorio con simetŕıa esférica y estático
que se genera en el espacio vaćıo alrededor de un objeto masivo que también tiene esta simetŕıa.
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Atendiendo a esto, para encontrar dicha solución se procede como sigue. Se comienza buscando la
forma de una métrica espacialmente isotrópica. Para ello, se impone que esta solo dependa de los
invariantes bajo rotaciones que se pueden obtener con las coordenadas espaciales y sus diferenciales:

~x · ~x, d~x · d~x, ~x · d~x.

Además, la isotroṕıa también implica que las funciones que actúen como coeficientes de la métrica
solo puedan depender del tiempo y la distancia al origen r. De este modo, el elemento de ĺınea debe
tener la forma siguiente:

ds2 = A(t, r)dt2 −B(t, r)dt~x · d~x− C(t, r)(~x · d~x)2 −D(t, r)d~x2.

Haciendo un cambio a coordenadas esféricas, pasa a tener la siguiente expresión

ds2 = A(t, r)dt2 −B(t, r)rdtdr − C(t, r)r2dr2 −D(t, r)(dr2 + r2 sin2 dθ2 + r2 sin2 dφ2).

De esta manera, absorbiendo el factor r en algunas de las funciones anteriores y redefiniendo
también la coordenada radial como r2 = D(r, t), se encuentra que la forma más general de una
métrica isotrópica debe ser

ds2 = A(t, r)dt2 −B(t, r)r dt dr − C(t, r)dr2 − r2(dθ2 + sin2 θdφ2).

Ahora, redefiniendo la coordenada temporal se elimina el término cruzado dt dr. Además, puesto
que buscamos que la métrica también sea estática, se elimina la dependencia temporal en las
funciones que actúan como coeficientes de la métrica. Con todo, la forma más general de una
métrica isotrópica y estática es:

ds2 = A(r)dt2 −B(r)dr2 − r2(dθ2 + sin2 θdφ2). (1)

Obsérvese que este elemento de ĺınea queda especificado por dos funciones de la coordenada r.
Además, su restricción a espacios de r y t constante es el elemento de ĺınea de una esfera bi-
dimensional, lo que da cuenta de la isotroṕıa que impońıamos. Puesto que en general B(r) no
es necesariamente la función unidad, no podemos interpretar la coordenada r como la coordena-
da radial eucĺıdea del espacio tridimensional a la que estamos acostumbrados. Sin embargo, śı se
corresponde con el valor que verifica que las esferas bidimensionales anteriores tienen área 4πr2.

Por último, se impone que una métrica como esta sea solución de las ecuaciones de Einstein en
vaćıo. En un espacio-tiempo cuatridimensional esto se reduce a imponer que el tensor de Ricci sea
nulo, pues tomando la traza en la ecuación de Einstein en vaćıo sin constante cosmológica se tiene
la siguiente cadena de implicaciones:

Rµν −
1

2
gµνR = 0⇒ R− 2R = −R = 0⇒ Rµν = 0.

Calculando dicho tensor de Ricci para el elemento de ĺınea (1) nos encontramos con que este es
diagonal, e igualando a cero dichas componentes diagonales llegamos a unas ecuaciones diferenciales
de segundo orden para A(r) y B(r). Se resuelven estas ecuaciones y se llega a que

A(r) = c1

(
1 +

c2
r

)
, B(r) =

(
1 +

c2
r

)−1
,
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donde c1 y c2 son constantes de integración. En el ĺımite de campo débil, se puede demostrar (ver
[3]) que, si Φ es el potencial gravitatorio newtoniano, se debe cumplir

A(r)

c2
≈ 1 +

2Φ

c2
.

Además, en este ĺımite, la coordenada r śı puede aproximarse como la coordenada radial que
comentábamos. Para un cuerpo con simetŕıa esférica y masa M , el potencial gravitatorio es Φ =
−GM/r, lo que nos permite identificar las constantes de integración. Con todo, se obtiene la
expresión:

ds2 = c2
(

1− 2GM

c2r

)
dt2 −

(
1− 2GM

c2r

)−1
dr2 − r2

(
dθ2 + sin2 θ dφ2

)
. (2)

Que es la conocida como métrica de Schwarzschild. Al sistema de coordenadas (t, r, θ, φ) se le
denomina en consecuencia coordenadas de Schwarzschild.

2.2. Caracterización de las coordenadas

En el presente texto se trabajará constantemente con cambios de coordenadas, pues dado el carácter
covariante de las Ecuaciones de Einstein, una métrica que es solución de estas sigue siéndolo tras
someterla a un cambio de coordenadas. Una caracterización que siempre se puede establecer sobre
una coordenada xµ en un punto P consiste en determinar si dicha coordenada es de género tiempo,
espacio o nulo. Esta clasificación se corresponde de forma natural con el género del vector tangente
en el punto P a la curva coordenada en cuestión. De esta forma, se puede establecer simplemente
conociendo el signo del elemento gµµ (sin suma) de la métrica en P . Para el convenio de signatura
que utilizaremos en este trabajo (+−−−): si es positivo diremos que tiene género temporal; si es
negativo, espacial; y si se anula, género luz o nulo. En efecto, la curva coordenada asociada a la
coordenada µ-ésima se puede parametrizar según: xν(s) = δνµs, luego su vector tangente en cada
punto es uν = δνµ, cuya norma al cuadrado es simplemente el coeficiente gµµ que se comentaba.

2.3. El agujero negro de Schwarzschild

Rápidamente, observando el elemento de ĺınea (2), se encuentra que no está bien definido en:

r = 0 & r = rs :=
2GM

c2
,

donde este segundo valor es el conocido radio de Schwarzschild. Cuando se dice que no está bien
definida, esto significa que no permite obtener la 2-forma correspondiente en los espacios tangentes
de puntos con dicha coordenada radial, y por tanto, tampoco establecer la geometŕıa del espacio-
tiempo alĺı. Sin embargo, como la métrica es sólo válida en el exterior del cuerpo que genera
el campo gravitatorio, estos comportamientos singulares no tienen por qué ser necesariamente
problemáticos, pues el radio de Schwarzschild es normalmente mucho menor que el radio del objeto
(por ejemplo, en el caso de la Tierra, este es menor a 1 cm.). Para resolver las ecuaciones de
Einstein en el interior del cuerpo masivo, se requiere conocer un tensor enerǵıa-momento apropiado
que describa la distribución de masa esférica y estática. Estas soluciones se denominan de forma
natural soluciones interiores.

A d́ıa de hoy sabemos que hay estrellas muy masivas que, en la última fase de su desarrollo
termonuclear, colapsan gravitacionalmente por debajo de su radio de Schwarzschild [4]. Cuando
tenemos simetŕıa esférica en este proceso, una vez sucede esto somos incapaces de observar qué
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sucede con el objeto masivo [5], y por tanto decimos que se ha originado un agujero negro. En este
trabajo concreto, se trabajará con el modelo del agujero negro de Schwarzschild, que no tiene carga
ni momento angular. A partir de ahora, estudiaremos el elemento de ĺınea (2) con la coordenada
r recorriendo todos los posibles valores que pueda tomar: r > 0, pues esta es la geometŕıa que
(debidamente truncada) encontraŕıamos en el espacio vaćıo en torno a dicho tipo de agujero negro.
Es más: el teorema de Birkhoff establece que la solución de Schwarzschild es la única posible para
las ecuaciones de Einstein para cualquier distribución esférica de masa (sin necesidad de que sea
estática). Aśı, es importante conocer bien cuáles son los fenómenos que describe la misma.

2.4. Las singularidades de la métrica de Schwarzschild

Considerando por tanto el elemento de ĺınea (2) con sus coordenadas definidas en el mayor dominio
posible, estudiemos en más detalle los radios problemáticos. Los comportamientos singulares de
la métrica pueden deberse o bien a una mala elección de coordenadas, o bien a una verdadera
singularidad en la geometŕıa del espacio-tiempo. Una forma de distinguir en cuál de estas situa-
ciones nos encontramos consiste en calcular los escalares de curvatura asociados a la métrica y
comprobar si también son singulares en los puntos que nos interesan. En caso de que estos hereden
el comportamiento singular, al tratarse de elementos geométricos independientes de coordenadas,
no podremos revertir esta situación v́ıa cambios de coordenadas. No obstante, esto no es suficiente
para concluir que tenemos una singularidad espacio-temporal, pues su naturaleza es más sutil, y
se discutirá en las últimas secciones de este trabajo. Por el contrario, si adquieren valores finitos,
śı podremos asociar la singularidad en la métrica a un mal comportamiento de las coordenadas, e
intentar solucionar esto buscando otros sistemas que describan bien la geometŕıa en esos puntos.

Para la métrica de Schwarzschild, sabemos que el tensor de Ricci es nulo, pues es lo que impońıamos
para hallarla, luego también el escalar de Ricci se anula. Sin embargo, a partir del tensor de
Riemann, podemos obtener un escalar de curvatura conocido por escalar de Kretschmann:

RµναβR
µναβ =

12 r2s
r6

,

que toma un valor finito para r = rs pero es singular en r = 0. Ante esto, nos centramos en
r = rs para intentar ver cómo podŕıamos solucionar el comportamiento de las coordenadas ah́ı.
Encontramos que suceden dos fenómenos interesantes.

En primer lugar, intentemos ver qué sucedeŕıa al cruzar r = rs. En la región r > rs encontramos
que la coordenada t es de género tiempo mientras que las coordenadas r, θ, φ son de género espacio.
De hecho, en esta zona podemos dotar a estas coordenadas de un significado f́ısico razonable: ya
comentamos el que teńıan θ, φ y r, mientras que la coordenada t se corresponde con el tiempo
propio de un observador inmóvil en el infinito espacial. Sin embargo, si consideramos la región
r < rs, los coeficientes gtt y grr cambian de signo, luego t pasa a tener género espacio y r género
tiempo. Este cambio de género se debe a que gtt se anula en r = rs y grr se dispara a infinito al
anularse también su denominador.

Veamos en segundo lugar cómo este comportamiento en los coeficientes de la métrica da lugar
a problemas con las geodésicas cuando nos aproximamos por la región regular al radio r = rs.
Estudiemos las geodésicas asociadas a un movimiento radial (θ = cte. y φ = cte.) en la región
r > rs. Con respecto a las geodésicas nulas, la condición de la capa de masas nos da una ecuación
diferencial el t y r que se puede integrar fácilmente. Encontramos aśı que estas curvas verifican las
siguientes ecuaciones:
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ct = r + rs ln

∣∣∣∣ rrs − 1

∣∣∣∣+ cte. (fotón saliente),

ct = −r − rs ln

∣∣∣∣ rrs − 1

∣∣∣∣+ cte. (fotón entrante).

Observamos que han heredado el comportamiento singular en r = rs de la métrica. De este modo,
en un diagrama (ct, r) encontraremos que las tangentes a la trayectoria de un fotón tienen una
pendiente que tiende a infinito conforme nos acercamos a r = rs. Esto hace que los conos de luz se
hagan más estrechos cuanto más nos acercamos a este radio, de modo que también las trayectorias
de part́ıculas masivas acercándose a ese radio deben hacerse cada vez más verticales, sin sobrepasar
r = rs. Si ahora consideramos un observador en el infinito espacial, encontramos que este ve que
la part́ıcula tarda un tiempo infinito en alcanzar r = rs. Ello se debe a que las direcciones iniciales
de los fotones que emite una part́ıcula acercándose a dicho radio son cada vez más verticales, luego
cada vez tardan más en llegar a dicho observador. Veamos ahora cómo es este trayecto desde el
punto de vista de la part́ıcula, es decir, estudiemos las geodésicas temporales. Si consideramos una
part́ıcula que parte del reposo desde un radio finito r0 > rs, se encuentra que la ecuación radial de
su trayectoria respecto al tiempo propio τ debe cumplir:

τ =
2

3

√
r30
rsc2

− 2

3

√
r3

rsc2
,

donde se toma la constante de integración de manera que r(τ = 0) = r0 y se considera la trayectoria
entrante. De este modo tenemos que la part́ıcula tardaŕıa un tiempo propio finito en llegar a r = rs
y a r = 0. Esto parece contradecir el resultado que acabamos de obtener, por el cual un observador
en el infinito nunca llegaba a ver la part́ıcula cruzar el radio r = rs. Ante esto, lo que debe suceder
es que la part́ıcula śı consigue cruzar este radio, pero la coordenada t no es capaz de predecir
bien este comportamiento. Esto se debe a que dicha coordenada describe el tiempo propio de un
observador asintótico, lo cual difiere enormemente de lo que ve un observador en cáıda libre hacia
el radio de Schwarzschild. Además, también podemos obtener una ecuación como la anterior que
relacione t y r en estas trayectorias. En ella se predice que se requiere un tiempo infinito para
alcanzar r = rs pero también, que en la región r < rs el tiempo resulta decreciente conforme nos
acercamos a r = 0.

Estas observaciones nos dan pistas sobre cómo fallan las coordenadas al describir la geometŕıa
conforme nos acercamos a r = rs. Para poner fin a estos problemas, buscaremos entonces que
en las nuevas coordenadas los coeficientes de la métrica no se anulen ni tengan comportamientos
singulares.

3. Coordenadas de Eddington-Finkelstein

En primer lugar estudiaremos un cambio de coordenadas que, si bien no logra resolver todos los
problemas expuestos sobre las geodésicas, sirve para ilustrar el procedimiento que se seguirá a
la hora de buscar el cambio que śı lo haga. Como acabamos de ver, las geodésicas de fotones
y part́ıculas masivas que se mueven radialmente parecen “cruzar” el radio r = rs en t = ±∞.
Ante esto, parece razonable intentar cambiar el tiempo por otra coordenada cuyo valor tengamos
controlado en las geodésicas, por ejemplo, buscándola de modo que resulte constante en ellas. En este
caso, utilizaremos para sondear el espacio-tiempo trayectorias de fotones moviéndose radialmente.
Roger Penrose fue la primera persona en hacer expĺıcitamente los cambios de coordenadas que
exponemos en esta sección [5], aunque atribuyó el mérito de la idea a Arthur S. Eddington [6] y
David Finkelstein [7], de ah́ı el nombre de las coordenadas.
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3.1. Coordenadas de Eddington-Finkelstein avanzadas

Teńıamos que la geodésica de un fotón entrante moviéndose radialmente estaba dada por:

ct = −r − rs ln

∣∣∣∣ rrs − 1

∣∣∣∣+ cte.

Atendiendo a la discusión anterior, tomamos la constante de integración como una nueva coorde-
nada:

p = ct+ r + rs ln

∣∣∣∣ rrs − 1

∣∣∣∣ , (3)

que por motivos históricos se denomina parámetro de tiempo avanzado. Cambiando la coordenada
t por esta, encontramos que la métrica pasa a tener la siguiente forma:

ds2 =
(

1− rs
r

)
dp2 − 2dpdr − r2(dθ2 + sin2 θ dφ2). (4)

Parémonos un momento a analizar el cambio de coordenadas efectuado. Podŕıa resultarnos extraño
puesto que no es un difeomorfismo en r = rs, luego no es un cambio de coordenadas válido para ese
radio. Sin embargo, nos basta con que lo sea en la región regular para la métrica de Schwarzschild
en las coordenadas (t, r, θ, φ). Con este cambio, conseguimos una métrica regular en 0 < r < +∞ a
partir de otra válida en rs < r < +∞, de manera que ambas representan el mismo espacio-tiempo
en esta segunda región. Aśı, hemos obtenido a una nueva variedad semi-riemanniana que contiene
la región no singular de la geometŕıa de Schwarzschild como subespacio propio. En esta situación
decimos que hemos encontrado una extensión de la métrica.

Veamos con detalle qué hemos conseguido solucionar. En este nuevo sistema de coordenadas r
resulta una coordenada nula, al igual que p en r = rs, donde cambia de género, de temporal
a espacial. De este modo tenemos un elemento de ĺınea sin comportamientos singulares en 0 <
r < +∞, pero con un coeficiente que se anula para r = rs. Este hecho va a dar lugar a un
comportamiento singular en las geodésicas de fotones radiales salientes, que son las que no hemos
examinado. En efecto, de la condición de la capa de masas si θ y φ se toman constantes, se tiene
que las geodésicas nulas deben cumplir:(

1− rs
r

)(dp
dr

)2

− 2
dp

dr
= 0,

lo que da lugar a dos posibles soluciones:

dp

dr
= 0 ⇒ p = cte., fotón entrante,

dp

dr
= 2

(
1− rs

r

)−1
⇒ p = 2r + 2rs ln

∣∣∣∣ rrs − 1

∣∣∣∣+ cte., fotón saliente.

Y aśı, observamos que la segunda solución sigue disparándose a infinito cuando r = rs.

Al margen de esto, se suele completar este procedimiento definiendo una coordenada temporal
(para evitar tener una coordenada nula, que es menos intuitiva a nivel f́ısico) dada por:

ct′ = p− r = ct+ rs ln

∣∣∣∣ rrs − 1

∣∣∣∣ . (5)

Con lo que el elemento de ĺınea adquiere la forma:

ds2 = c2
(

1− rs
r

)
dt′2 − 2rsc

r
dt′dr −

(
1 +

rs
r

)
dr2 − r2(dθ2 + sin2 θ dφ2). (6)
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Estas coordenadas (t′, r, θ, φ) se denominan coordenadas avanzadas de Eddington-Finkelstein. Po-
demos preguntarnos por la estructura de los conos de luz de su diagrama (ct′, r). Las ecuaciones
para fotones entrantes y salientes que se mueven radialmente en estas nuevas coordenadas se pueden
obtener fácilmente de la condición de capa de masas y son:

ct′ = −r + cte., fotón entrante,

ct′ = r + 2rs ln

∣∣∣∣ rrs − 1

∣∣∣∣+ cte., fotón saliente.

Ante esto, encontramos que las trayectorias de los fotones entrantes son simplemente rectas que
cruzan la recta r = rs por donde deban. Por su lado, las de los fotones salientes siguen disparándose
a t′ = −∞ cuando r = rs. Con este diagrama, se predice que una part́ıcula o fotón que cae hacia
r = 0 puede cruzar sin problema el punto r = rs. Sin embargo, en este radio, la estructura de los
conos de luz cambia, de modo que el futuro siempre está orientado hacia la singularidad r = 0.
Una part́ıcula o fotón que se mueva radialmente empezando con r < rs no podrá escapar jamás
a la región r > rs sin violar causalidad. Además, si observamos las ecuaciones para las geodésicas
nulas salientes, si una part́ıcula emitiera fotones desde la región r < rs, estos nunca alcanzaŕıan a
un observador en r > rs. De este modo, se hace intuitivo el nombre agujero negro, el cual se define
de manera más formal como un objeto compacto que tiene un horizonte de sucesos, es decir, una
superficie con las caracteŕısticas de la dada por r = rs.

3.2. Coordenadas de Eddington-Finkelstein retardadas

En realidad, la elección de las geodésicas de fotones entrantes ha sido arbitraria, y se podŕıa repetir
todo el proceso expuesto anteriormente considerando las de fotones salientes. Sin reparar tanto en
los detalles, se definiŕıa un parámetro de tiempo retardado dado por

q = ct− r − rs ln

∣∣∣∣ rrs − 1

∣∣∣∣ , (7)

y a partir de este una nueva coordenada temporal definida como

ct∗ = q + r = ct− rs ln

∣∣∣∣ rrs − 1

∣∣∣∣ . (8)

De este modo en las coordenadas (t∗, r, θ, φ), denominadas coordenadas de Eddington-Finkelstein
retardadas, el elemento de ĺınea de Schwarzschild seŕıa simplemente la inversión temporal del que se
obteńıa con las coordenadas avanzadas. Trazando un diagrama (ct∗, r) y estudiando la estructura de
conos de luz, encontramos algunos cambios interesantes respecto a la situación previa. En este caso,
las trayectorias de fotones salientes son rectas que cruzan sin problema el radio r = rs. De hecho, por
cómo se configuran los conos de luz, cualquier part́ıcula (o fotón) en la región r < rs debe salir de la
misma, alejándose siempre de r = 0. Este fenómeno f́ısico se denomina agujero blanco, y resulta algo
extraño con respecto a la intuición f́ısica que tenemos de la fuerza gravitatoria, que siempre resulta
atrativa con respecto a un cuerpo masivo. Más adelante estudiaremos qué significa la predicción
de este fenómeno, contrario al obtenido con las coordenadas avanzadas. Además, realizando un
desarrollo análogo al caso anterior, se obtiene que con este cambio de coordenadas las trayectorias
de fotones entrantes siguen teniendo comportamientos singulares en r = rs, y también se mantiene
el cambio de género en la coordenada temporal.
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4. Coordenadas de Kruskal-Szekeres

Hemos visto cómo con las coordenadas de Eddington-Finkelstein, si tomábamos una coordenada
basada en las geodésicas entrantes (respectivamente salientes) de fotones moviéndose radialmente,
consegúıamos resolver los problemas relacionados con dicho grupo de geodésicas, manteniéndose
los problemas asociados a las salientes (respectivamente entrantes). Por tanto, es natural que el
próximo sistema de coordenadas que estudiemos introduzca dos coordenadas nuevas en lugar de
una, una basada en las geosésicas salientes, y otra en las entrantes. Esta fue la idea que tuvieron
simultáneamente Kruskal [8] y Szekeres [9] en 1960, y que exponemos en esta sección.

4.1. Transición desde las coordenadas de Eddington-Finkelstein

Aprovechando el trabajo de la sección anterior, una primera apuesta razonable seŕıa introducir
simultáneamente los parámetros de tiempo avanzado y retardado. La métrica de Schwarzschild
quedaŕıa de la forma:

ds2 =
(

1− rs
r

)
dp dq − r2(dθ2 + sin2 θdφ2), (9)

donde r es una función de p y q, definida de forma impĺıcita por

1

2
(p− q) = r + rs ln

∣∣∣∣ rrs − 1

∣∣∣∣ .
En este sistema de coordenadas, p y q son coordenadas nulas, pero seguimos teniendo un coeficiente
en la métrica que se anula en r = rs. Sin embargo, lo que hemos ganado es que precisamente este
se encuentra en un término cruzado de coordenadas nulas, luego ahora podemos intentar redefinir
estas coordenadas para hacerlo desaparecer, cosa que no pod́ıamos conseguir en las coordenadas de
Eddington-Finkelstein. Observando la función impĺıcita que define la coordenada r, tenemos que
se cumple

exp

(
p− q
2rs

)
= exp

(
r

rs

)(
r

rs
− 1

)
,

lo que nos sugiere tomar un cambio de coordenadas como el siguiente:

p̄ = exp

(
p

2rs

)
, q̄ = − exp

(
− q

2rs

)
, (10)

para el cual se obtiene un elemento de ĺınea dado por

ds2 =
4 r3s
r

exp

(
− r

rs

)
dp̄ dq̄ − r2(dθ2 + sin2 θdφ2).

En él, de nuevo, el valor de r viene determinado por la función impĺıcita

p̄q̄ = − exp

(
r

rs

)(
r

rs
− 1

)
.

En estas nuevas coordenadas hemos conseguido no tener ningún coeficiente con comportamiento
problemático. Sin embargo, con intención de tener una mayor intuición f́ısica sobre el significado
de las coordenadas, hacemos un último cambio, definiendo las coordenas temporal v y espacial u
dadas por

v =
1

2
(p̄+ q̄), u =

1

2
(p̄− q̄). (11)
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Con todo, el elemento de ĺınea en las coordenadas de Kruskal-Szekeres (v, u, θ, φ) queda:

ds2 =
4 r3s
r

exp

(
− r

rs

)
(dv2 − du2)− r2(dθ2 + sin2 θdφ2). (12)

Y el valor de r a partir de estas últimas coordenadas se obtiene de la ecuación impĺıcita

u2 − v2 =

(
r

rs
− 1

)
exp

(
r

rs

)
. (13)

Para concluir, prestemos algo de atención al elemento de ĺınea (12). Si restringimos este a espa-
cios con θ y φ constantes, obtenemos una métrica de dos dimensiones conforme a la métrica de
Minkowski. Esto cobrará relevancia cuando estudiemos la estructura de los conos de luz en estas
coordenadas.

4.2. Relación con las coordenadas de Schwarzschild

Intentemos recuperar información sobre la geometŕıa que describe el elemento de ĺınea en las coor-
denadas de Kruskal-Szekeres. Para ello, expresemos las coordenadas u y v en función de las coor-
denadas de Schwarzschild t y r. Haciendo las cuentas del cambio de coordenadas de la métrica,
encontramos que las siguientes relaciones nos permiten transformar el elemento de ĺınea de Kruskal-
Skeres en el de Schwarzschild. Se distingue entre r > rs, donde se tiene

v = exp

(
r

2rs

)√
r

rs
− 1 sinh

(
ct

2rs

)
,

u = exp

(
r

2rs

)√
r

rs
− 1 cosh

(
ct

2rs

)
,

(14)

y r < rs, donde se encuentra

v = exp

(
r

2rs

)√
1− r

rs
cosh

(
ct

2rs

)
,

u = exp

(
r

2rs

)√
1− r

rs
sinh

(
ct

2rs

)
.

(15)

Además, por la ecuación (13), que debe verificarse entre las coordenadas u y v de Kruskal-Szekeres
y la coordenada r de Schwarzschild, encontramos que la primera relación (14) es válida en el
cuadrante dado por u > |v|, mientras que la relación (15) es válida en el dado por v > |u|.
Llamaremos al primero cuadrante I y al segundo, cuadrante II. En los cuadrantes simétricos a estos,
que denominaremos cuadrantes I’ y II’ respectivamente, se pueden establecer las mismas relaciones
pero con un signo negativo en ambas. Ante esto, lo primero que observamos es que la variedad
que describen las coordenadas de Kruskal-Szekeres contiene dos espacio-tiempos de Schwarzschild.
Esto no solo se ve a través de los cambios de coordenadas que acabamos de exponer, sino que
en esta sección encontraremos que los fenómenos descritos por la geometŕıa de Schwarzschild se
desdoblan en las coordenadas de Kruskal-Szekeres. Por ejemplo, ya podemos ver cómo aparecen dos
regiones “exteriores”, es decir, asociadas a r > rs; y dos regiones “interiores”, asociadas a r < rs
de la geometŕıa de Schwarzschild. De este modo, las coordenadas de Schwarzschild constituyen un
sistema de coordenadas local de una parte del espacio-tiempo de Kruskal-Szekeres.
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Dicho esto, pasemos a estudiar cómo seŕıa el diagrama espacio-temporal en las coordenadas de
Kruskal-Szekeres. En primer lugar, observamos que las trayectorias nulas radiales (ds2 = dθ =
dφ = 0) responden a la ecuación

v = ±u+ cte.,

es decir, son rectas que forman ±45o con los ejes. Esto es una manifestación de que la restricción
de la métrica (12) a subespacios con θ = cte. y φ = cte. es conforme a la métrica de Minkowski. De
este modo, sus conos de luz son como los de la relatividad especial, lo cual facilita mucho la tarea
de entender las relaciones causales entre sucesos en el diagrama. Las geodésicas que “apuntan hacia
arriba”, es decir, cuya tangente forma un ángulo menor a 45o con el eje v son de tipo temporal,
mientras que las que apuntan “hacia fuera” son de tipo espacial.

Pasemos ahora a estudiar qué forma adquieren en este diagrama los hiperplanos con r constante del
espacio-tiempo de Schwarzschild. Atendiendo a la ecuación (13), si r es constante entonces también
resulta constante u2 − v2, luego estos espacios toman la forma de hipérbolas en el diagrama (v, u).
En particular, contemplemos lo que sucede con los radios problemáticos que estábamos estudiando.
Por un lado, el radio r = rs da lugar a las rectas v = ±u, las cuales son las aśıntotas del conjunto de
hipérbolas que representan los espacios de r constante y también suponen el ĺımite entre las cuatro
regiones que distingúıamos anteriormente. Por su lado, y quizá más interesante, la singularidad en
el punto r = 0 se desdobla ahora en las hipérbolas v = ±

√
u2 + 1. Observamos que estas curvas

verifican ∣∣∣∣dvdu
∣∣∣∣ =

∣∣∣∣ u√
u2 + 1

∣∣∣∣ < 1,

luego son de género espacial, situándose una en la región pasada II’ y otra en la futura II. Obsérvese
la enorme diferencia con respecto a la situación anterior: en el diagrama (ct, r) de las coordenadas
de Schwarzschild esta singularidad quedaba representada por una recta de género temporal que
marcaba el origen de coordenadas.

Finalmente, veamos qué forma adquieren en este diagrama los espacios con t constante. A partir
de las relaciones del principio de esta sección, se puede ver que

tanh

(
ct

2rs

)
=

{
v/u si r > rs,
u/v si r < rs,

(16)

luego establecer t = cte. se corresponde en las coordenadas de Kruskal-Szekeres con rectas de
v/u = cte. que pasan por el origen. La recta que se corresponde con t = −∞ es u = −v, mientras
que la que se corresponde con t = +∞ es u = v. Ambas coinciden con las rectas que marcaban
r = rs.

4.3. Dos universos, agujeros blancos y agujeros negros

Habiendo hecho la discusión previa, podemos pasar a estudiar cómo se relacionan las regiones del
diagrama y qué representan. Gráficamente, la situación se recoge en la figura 1. Por la estructura
de los conos de luz, las regiones I’ y II’ son inaccesibles desde I y II. Además, como ya hemos
mencionado, I y I’ se corresponden con regiones exteriores al radio de Schwarzschild en la geo-
metŕıa del espacio-tiempo. Estas constituyen dos universos asintóticamente planos diferentes, que
en principio, solo parecen poder conectarse en el origen del diagrama (u, v), en el que encontramos
un fenómeno que estudiaremos en la sección siguiente. Por su lado, las regiones II y II’ se corres-
ponden con la zona interior al horizonte de eventos. Sin embargo, estas regiones interiores predicen
comportamientos f́ısicos opuestos entre śı: cualquier part́ıcula o fotón en la región II’ escapa de esta
hacia las regiones I y I’, mientras que cualquier part́ıcula o fotón que acceda a la región II debe

11



acabar su trayectoria en la singularidad futura. Aśı, la primera se corresponde con el fenómeno que
denominábamos agujero blanco, mientras que la segunda es el ya familiar agujero negro.

Figura 1: Diagrama espacio-temporal en coordenadas de Kruskal-Szekeres. Se reflejan las cuatro
regiones caracteŕısticas, las hipérbolas correspondientes a trayectorias con r = cte., las rectas
asociadas a trayectorias con t = cte. y la trayectoria de una part́ıcula que se mueve radialmente
cayendo a la singularidad futura. Por último, µ es un parámetro tal que rs = 2µ. Extráıda de [3].

Obsérvese que hemos conseguido obtener es una mayor intuición f́ısica sobre lo que puede repre-
sentar este agujero blanco. Dećıamos en la sección anterior que esté fenómeno predicho por la
Relatividad General pod́ıa parecernos extraño por las intuiciones f́ısicas que tenemos sobre cómo
actúa la gravedad. Sin embargo, el diagrama de Kruskal-Szekeres revela que no podemos “caer” en
un agujero blanco: un agujero blanco solamente puede existir en el pasado, luego no hay incongruen-
cia con nuestra intuición en este sentido. Aun aśı, el hecho de que la geometŕıa de Schwarzschild
conlleve la existencia de dos universos distintos ha perturbado a investigadores y teóricos, llevando a
nuevas propuestas sobre cómo interpretar el agujero blanco. Exploraremos algunas interpretaciones
de dicho fenómeno en la sección siguiente.

Finalmente, ¿existen realmente estos fenómenos que describimos? Actualmente, tenemos evidencias
suficientes que apoyan la existencia de agujeros negros. Por ejemplo, a través de las observaciones
de emisiones de rayos X en sistemas binarios donde el objeto compacto mayor es un agujero ne-
gro [10], el famoso experimento que confirmó la existencia de ondas gravitacionales gracias a un
fenómeno de colisión de dos agujeros negros de masa estelar [11], o el también conocido experimen-
to que permitió obtener una imagen de la fotoesfera del agujero negro en el centro de la galaxia
M87 [12], entre muchos otros. Sin embargo, no podemos decir lo mismo de los agujeros blancos.
Como ya hemos indicado, se ha concluido que los agujeros negros pueden aparecer al producirse
el colapso gravitacional de objetos muy masivos, pero no se conoce un proceso de formación tan
claro para el caso de los agujeros blancos. En cuanto a la detección de fenómenos compatibles con
sus caracteŕısticas, se ha propuesto asociar ciertas observaciones de explosiones de rayos gamma
[13] como la detección GRB 060614 de la NASA, a la expulsión de materia que conlleva un agujero
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blanco. Sin embargo, esta interpretación no termina de ser concluyente para afirmar que se trata
en efecto de agujeros blancos.

4.4. El puente de Einstein-Rosen

En la discusión sobre cómo es la geometŕıa descrita por las coordenadas de Kruskal-Szekeres,
encontrábamos que se predećıan dos universos asintóticamente planos diferentes, cuyo único punto
de contacto se tiene en el origen del diagrama (v, u). En esta sección, el objetivo consiste en describir
un fenómeno interesante que predice la geometŕıa de Schwarzschild con respecto a la relación entre
dichos universos. Para ello, comenzaremos estudiando la geometŕıa de la hipersuperficie espacial
v = 0, que se extiende desde u = −∞ hasta u = +∞, y que a su vez se corresponde con un espacio
en el que t = 0 (basta con ver las relaciones de la sección 4.2). Recordemos que en el diagrama
(v, u) cada punto en realidad representa una 2−esfera, pues los ángulos θ y φ se han suprimido
del mismo. Tomando además la restricción al plano ecuatorial de dicha esfera, es decir θ = π/2, el
elemento de ĺınea adquiere la forma:

ds2 = −4 r3s
r

exp

(
− r

rs

)
du2 − r2dφ2. (17)

Podemos reinterpretar esta métrica (cambiándola de signo) como la de una variedad sumergida
en un espacio eucĺıdeo, lo cual nos permite obtener información geométrica sobre qué representa.
Observemos, antes de nada, que al movernos sobre la hipersuperficie v = 0 desde u = −∞ a
u = +∞ el valor de r decrece hasta un valor mı́nimo r = rs y luego vuelve a aumentar su valor.
Dicho esto, pasemos a ver cómo seŕıa el espacio descrito por una métrica como la opuesta de (17).
Para ello, la expresamos en función de las coordenadas r y φ, obteniendo

dσ2 =
(

1− rs
r

)−1
dr2 + r2dφ2. (18)

Ahora, suponemos conocido un sistema de coordenadas de la variedad vista en R3 dado por xi(r, φ),
con i = 1, 2, 3, de manera que las coordenadas xi se pueden ver como coordenadas del espacio
eucĺıdeo tridimensional en cuestión. Por la simetŕıa axial que presenta el elemento de ĺınea (17) es
útil considerar que dichas coordenadas son en nuestro caso las coordenadas ciĺındricas: (ρ, ϕ, z). En
estas coordenadas, el elemento de ĺınea del espacio eucĺıdeo plano tiene la forma

ds2 = dρ2 + ρ2dϕ2 + dz2.

Además, dada dicha simetŕıa, también podemos tomar el sistema de coordenadas de la superficie
que queremos describir de la forma

ρ = ρ(r), ϕ = φ, z = z(r).

De esta manera, restringiendo la métrica del espacio eucĺıdeo a nuestra superficie, tenemos que esta
debe cumplir

dσ2 =

[(
dρ

dr

)2

+

(
dz

dr

)2
]
dr2 + ρ2dφ2,

y que asimismo debe ser igual a (18). Ante esto, obtenemos que ρ = r y que(
dρ

dr

)2

+

(
dz

dr

)2

= 1 +

(
dz

dr

)2

=
(

1− rs
r

)−1
.
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La solución de dicha ecuación nos da la ecuación impĺıcita

z(r) =
√

4rs(r − rs) + cte.

que describe una superficie en un espacio tridimensional representada en la figura 2. Obsérvese que
se ha suprimido un grado de libertad al establecer θ = π/2, luego realmente cada circuferencia de
radio r en dicha figura representa una esfera de superficie 4πr2. De este modo, la situación f́ısica
que se obtiene consiste en dos universos asintóticamente planos idénticos pero diferentes que se
unen a través de un puente de Eintein-Rosen con radio r = rs. Esta situación fue descrita por
primera vez en [14]. Aunque las ecuaciones de Einstein fijan la geometŕıa local del espacio-tiempo,
no permiten obtener información sobre la topoloǵıa del mismo, luego otra posible interpretación de
lo que se obtiene para el espacio v = 0 es un puente de Einstein-Rosen que conecta dos regiones
asintóticamente planas lejanas entre śı de un mismo Universo.

Figura 2: La estructura del puente de Einstein-Rosen, extráıda de [3]

En cualquiera de los casos anteriores, una de las caracteŕısticas de este puente es que es dinámico.
Dećıamos al principio de este texto que la geometŕıa de Schwarzschild se buscaba de modo que
fuera estática. Si observamos esto con más cuidado, encontramos que es cierto tan solo en la región
externa al horizonte de eventos, donde t es la coordenada temporal, y en efecto el elemento de ĺınea
no depende de dicha coordenada y es invariante bajo su inversión. Sin embargo, en la región interior
las coordenadas r y t cambian sus papeles, de manera que el espacio-tiempo en esta zona deja de
ser estático y evoluciona con la nueva coordenada temporal. Aśı, volviendo a nuesta hipersuperficie
v = 0 en las coordenadas de Kruskal-Szekeres, se observa que a medida que pasa el tiempo, parte
de este espacio entra en la región II y comienza a cambiar. La forma de la hipersuperficie conforme
se adentra en esta región II es cualitativamente la misma que la descrita en la figura 2, aunque la
“garganta” del puente se estrecha. Al llegar a v = 1 el puente se ha estrechado tanto que ambos
universos están únicamente en contacto a través de sus singularidades en r = 0, e inmediatamente
después se desconectan, cada uno manteniendo una singularidad. Como la solución de Kruskal-
Szekeres es simétrica en v encontramos el mismo comportamiento para valores negativos de esta
coordenada.

Aśı, poniendo todo en conjunto, se tiene la siguiente situación: se comienza con dos universos
asintóticamente planos desconectados, cada uno con una singularidad en r = 0. Conforme pasa
el tiempo, ambos se juntan por dichas singularidades y se forma un puente de Einstein-Rosen no
singular que los conecta. Este puente se hace cada vez más amplio hasta alcanzar su máximo radio
r = rs y luego se estrecha hasta desaparecer, retornando a la situación de partida. Aśı, como pre-
veńıamos, este puente nos permite reinterpretar la naturaleza del agujero blanco, pues identifica las
singularidades pasada y futura. De este modo, nos podŕıa permitir extender las geodésicas (veremos
qué significa esto con más cuidado en la próxima sección), es decir: suponer que la trayectoria de
una part́ıcula que cayera en la singularidad de la región II, emergeŕıa de la singularidad pasada
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y seŕıa expulsada a la región II’. Sin embargo, hay serias objecciones a que esto pueda realizarse,
y aún en caso de que pudiéramos suponerlo, puede resultar que f́ısicamente no tenga cabida que
un observador atraviese la singularidad. El primer problema que aparece en este sentido es que
no hay un mecanismo de formación f́ısico claro para esta estructura. Además, en caso de que lo
hubiera, el proceso de formación y destrucción de la garganta es demasiado rápido para que se
pueda cruzar. Por otro lado, la singularidad en r = 0 constituye una región del espacio en la cual la
curvatura, como ya hemos visto, se hace infinita. Ello sugiere que las fuerzas de marea también se
hacen infinitas en este punto, aunque poder concluir esto requiere un desarollo matemático sutil.
Estas fuerzas de marea infinitas destruiŕıan cualquier cuerpo con extensión que pasara por alĺı.
Adicionalmente, lo que śı podemos asegurar es que las ecuaciones de Einstein pierden su validez en
esta zona, luego cualquier hipótesis que se realice sobre qué ocurre ah́ı no tendrá respaldo f́ısico:
simplemente constituye una hipótesis matemática realizada ad hoc. Finalmente, existen una serie
de cuestiones concernientes a las condiciones de enerǵıa que se deben cumplir que imposibilitan
que se pueda cruzar esta garganta. Algunos de los problemas que acabamos de exponer se pueden
solucionar en otros tipos de estructuras: los agujeros de gusano (ver [15]) que tienen geodésicas
definidas para todo tiempo en ambos universos de la solución. Sin embargo, este asunto escapa del
objeto de este texto, por lo que no ahondaremos más en él

5. Extensiones maximales y singularidades

Todos los cambios de coordenadas que se han ido realizando hasta ahora han ido encaminados a
“solucionar” los problemas de la métrica. Para ello, hemos buscado espacio-tiempos con elementos
de ĺınea regulares que contuvieran las regiones no singulares de las variedades con elementos de ĺınea
mal definidos como subespacios propios. Al llegar al sistema de coordenadas de Kruskal-Szekeres,
hemos dado por concluido este proceso, pero no hemos reflexionado sobre por qué esta solución es
la mejor a la que podemos aspirar. La realidad es que esta cuestión está ı́ntimamente relacionada
con la naturaleza de las singularidades intŕınsecas de la geometŕıa espacio-temporal, como la que
no hemos conseguido sortear en la métrica de Schwarzschild para r = 0. El propósito de esta
sección será abordar esta cuestión y dar una base teórica sobre cómo podŕıamos caracterizar estas
singularidades para finalmente definir el concepto de extensión maximal, que es precisamente lo
que representa la solución de Kruskal-Szekeres.

5.1. Algunas intuiciones sobre singularidades espacio-temporales

En el proceso de intentar dar con una caracterización de lo que es una singularidad espacio-temporal
se ha llegado a múltiples definiciones, para las que luego se han encontrado contraejemplos [16]. Aśı,
el propósito de las dos próximas secciones será seguir la estela de dichos intentos para terminar con
el criterio más aceptado para detectar singularidades del espacio-tiempo, y entender sus posibles
problemas. Sin embargo, no se desarrollará hasta las últimas consecuencias el aparataje matemático
involucrado en la versión más general de esta definición, pues requiere un esfuerzo que escapa del
objetivo de este texto. Para nuestro ejemplo de la métrica de Schwarzschild, basta con quedarnos
con un caso menos general que podemos manejar mejor.

Antes de todo esto, una reflexión sobre de dónde vienen algunos problemas conceptuales asociados a
la definición de singularidad. Principalmente, estos residen en querer asociar la singularidad a “algo”
situado en un lugar del espacio-tiempo, como se hace en otras teoŕıas clásicas de campos. En efecto,
en ellas tenemos un espacio-tiempo de Minkowski bien definido y lo que se busca es cuándo una
cierta magnitud tensorial no está bien definida o se dispara a infinito en un cierto evento de dicho
espacio-tiempo. Sin embargo, aqúı la situación es completamente diferente: estamos estudiando la
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propia variedad y la estructura de la métrica que da lugar al espacio-tiempo. Si estos no están
definidos, no podremos hablar de eventos, de tiempos ni lugares. Por ejemplo, en el caso de la
métrica de Schwarzschild, si sólo podemos definir la variedad para r > 0, no podemos referirnos
al punto r = 0 como un lugar, pues no es parte de la solución ya que las Ecuaciones de Einstein
no se verifican en ese punto. De esta manera, notemos que cuando hablamos de singularidades en
realidad nos estamos refiriendo a espacio-tiempos singulares, y es esta noción la que pretendemos
caracterizar.

Ante esta idea de que las singularidades, de algún modo, no están presentes en el espacio-tiempo,
uno de los primeros intentos para tratarlas consistió precisamente en buscar incluirlas en la variedad
definiéndolas como un borde de la misma o redefiniendo la topoloǵıa del espacio si fuera necesario
[17]. Esto puede parecer sencillo e incluso llevarse a cabo de forma exitosa para algunos ejemplos
concretos, sin embargo, al intentar generalizar esta noción se ha llegado a severos problemas. No
abordaremos esta cuestión aqúı, si bien merece la pena mencionarla para completar el comentario
precedente.

No pudiendo hacer lo anterior, nos encontramos con que queremos detectar la existencia de compor-
tamientos singulares del espacio-tiempo cuando estos no son ni siquiera parte del mismo. Siguiendo
el punto de vista expuesto por R. P. Geroch en [18], un primer punto de partida para orientar la
búsqueda es estudiar, como ya hemos hecho antes, los escalares de curvatura, que caracterizan la
variedad y cuyo valor no puede ser modificado bajo cambios de coordenadas. Se pueden construir
un gran número de escalares de curvatura, por ejemplo: R, RµνR

µν , RαβµνR
αβµν ; o escalares dados

por polinomios que incluyan derivadas covariantes del tensor de Riemann. El valor de estos esca-
lares depende del punto que estemos considerando. Aśı, lo que nos gustaŕıa es encontrar alguno
de estos escalares tendiendo a infinito conforme dicho punto se acercara a la singularidad que ha
sido eliminada de la variedad para poder identificarla. Sin embargo, esto es algo tautológico, ya que
precisamente no sabemos identificar dicha situación. Además, en una curva que se propaga hacia
el infinito, es posible que algún escalar de curvatura también se dispare a infinito, y esta no es la
circunstancia que queremos catalogar como “singularidad”. Por otro lado, se pueden dar ejemplos
sencillos de variedades singulares que sin embargo tienen tensor de curvatura idénticamente nulo en
cada punto. Por ejemplo, si tomamos el espacio de Minkowski y eliminamos la región dada por los
puntos con coordenada azimutal 0 < φ < φ0, para posteriormente identificar cada punto con φ = 0
con el correspondiente con φ = φ0, nos encontramos con que se puede definir bien la estructura
de la variedad con su métrica en los puntos que hemos identificado con r > 0. Sin embargo, no
ocurre lo mismo en el origen r = 0, que constituye una singularidad cónica de la variedad, donde
no se puede definir correctamente el espacio tangente. Y aun aśı, como anticipábamos, el tensor
de Riemann es idénticamente nulo en cada punto, luego no consigue predecir este comportamiento
correctamente. Por otro lado, se pueden dar ejemplos en los que ocurre lo contrario a lo que acaba-
mos de exponer: se puede evitar el comportamiento singular sin hacer desaparecer las divergencias
[19], lo que termina de concluir que no hay una relación necesaria entre ambos conceptos.

A pesar de esto último, las situaciones investigadas en el párrafo anterior demostrarán pronto
su utilidad. Volvamos sobre la cuestión de distinguir cuándo una curva se está acercando a una
singularidad o se está extendiendo hacia infinito. Una primera respuesta intuitiva para diferenciarlas
se podŕıa basar en que la curva que se aproxima al infinito debeŕıa tener longitud asimismo infinita
desde un cierto punto, mientas que la que se aproxima a la singularidad debeŕıa tener longitud
finita. Ello se debe a que, según nuestra idea intuitiva de singularidad como un “agujero” en el
espacio-tiempo, las curvas que se encaminen hacia dicho agujero se verán cortadas. Sin embargo,
puesto que estamos trabajando con métricas indefinidas, la noción de “distancia” no funciona como
estamos acostumbrados, y hay curvas que se extienden al infinito con longitud nula. No obstante, śı
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conocemos un concepto que puede servirnos para este fin incluso con métricas indefinidas: el rango
del parámetro af́ın de una geodésica.

5.2. Completitud de caminos para detectar singularidades

Definamos una semi-geodésica como una curva geodésica que consideramos a partir de un cierto
punto (al que denominamos punto final) y que se extiende lo más lejos posible en un sentido desde
dicho punto. Diremos que un espacio es geodésicamente completo cuando el parámetro af́ın de cada
semi-geodésica recorre un rango no acotado de valores. Con estas definiciones, exploramos la posibi-
lidad de que podamos caracterizar un espacio-tiempo singular como aquel que no es geodésicamente
completo, pues sus geodésicas se encuentran con los espacios dejados por las singularidades.

Atendiendo a los diferentes tipos de geodésicas existentes, se podŕıa distinguir entre espacios con
geodésicas completas de género tiempo, espacio o nulo. Si extraemos artificialmente un punto re-
gular de un espacio-tiempo no singular, los tres tipos de geodésicas se ven afectados pasando a ser
incompletas. De este modo, si en efecto queremos utilizar la no completitud geodésica para caracte-
rizar la presencia de singularidades, debeŕıa cumplirse que estas tres maneras de ser geodésicamente
completo fueran equivalentes. Sin embargo, esto no se verifica, como demostró Geroch en el paper
que ya hemos mencionado [18]. Este construyó un espacio geodésicamente completo para geodésicas
de género luz y espacio, que sin embargo, no lo era para geodésicas de género tiempo. El proce-
dimiento seguido, además, era extrapolable para conseguir otros espacios parecidos que tuvieran
geodésicas incompletas de alguno de los géneros, manteniendo la completitud en los otros, y aśı
encontró espacio-tiempos de los siguientes tipos:

1. completo para género tiempo, incompleto para género espacio y nulo;

2. completo para género espacio, incompleto para género tiempo y nulo;

3. completo para género nulo, incompleto para género espacio y tiempo;

4. completo para género tiempo y nulo, incompleto para género espacio;

5. completo para género espacio y nulo, incompleto para género tiempo.

Al margen de este fracaso, encontramos que la incompletitud geodésica de género tiempo y nulo da
lugar a fenómenos contradictorios con nuestra intuición. Para el caso de geodésicas de género tiempo
se tiene una interpretación f́ısica inmediata. Puesto que el parámetro af́ın de dichas geodésicas se
asocia al tiempo que marcan los relojes de observadores o part́ıculas con estas como trayectorias,
que estas finalicen para un valor finito del mismo significa que pasado un tiempo propio finito dichos
observadores o part́ıculas cesan de existir. Por su parte, no se puede otorgar una interpretación f́ısica
aśı de sencilla al parámetro af́ın de geodésicas nulas. Sin embargo, sabemos que estas curvas reflejan
las trayectorias de fotones en el espacio-tiempo, que también parecen acabar de forma abrupta. Estas
circunstancias patológicas parecen suficientemente contradictorias con nuestra intuición f́ısica como
para que exista un amplio consenso en considerarlas como condición suficiente para denominar a
un espacio-tiempo singular [16]. De hecho, existen una serie de teoremas debidos a Hawking y
Penrose [4][5] para caracterizar los espacios singulares cuya prueba se reduce a comprobar esta
caracteŕıstica. Sin embargo, no se debe olvidar que puesto que no es una condición necesaria, existen
muchos otros espacios cumpliendo ser geodésicamente completos para geodésicas de género luz y
tiempo, que aun aśı, podŕıan ser considerados como singulares. Por ejemplo, en el mismo art́ıculo
anteriormente mencionado de Geroch [18] se construye un espacio geodésicamente completo que
contiene una curva de género tiempo de aceleración acotada y longitud finita. De esta manera,
un observador con una nave apropiada y una cantidad finita de combustible podŕıa recorrer dicha
curva y desaparecer tras un intervalo finito de tiempo. Si hemos asumido que un espacio singular
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era aquel en que los observadores inerciales pod́ıan desaparecer tras intervalos finitos de tiempo,
parece razonable incluir también a los observadores en naves espaciales aceleradas.

Aśı, en última instancia, lo que se hace para caracterizar los espacios singulares es generalizar el
concepto de parámetro af́ın a cualquier tipo de curva diferenciable en la variedad, independiente-
mente de que sea o no geodésica, y exigir la completitud respecto a dicho parámetro. Como ya
anunciábamos, aqúı se omitirá dicho procedimiento puesto que para analizar el espacio-tiempo de
Schwarzschild es suficiente quedarnos con la condición necesaria de completitud geodésica de género
temporal. Este procedimiento se desarrolla en detalle en [4].

5.3. Extensiones maximales

Ante toda la discusión realizada anteriormente cabe la siguiente objección: podemos clasificar como
singular un espacio regular al cual se le han quitado algunas regiones de forma artificial. Esto, en
realidad, no nos permite concluir que hay una patoloǵıa intŕınseca en la geometŕıa de la variedad,
sino que simplemente que no la estamos considerando al completo. Aśı, podemos resolver esta
cuestión fácilmente incluyendo de nuevo dichas regiones. Para ahorrarnos esta cuestión, restringimos
la clasificación de variedades singulares a los espacio-tiempos inextendibles, o dicho de otro modo
a las extensiones maximales de la geometŕıa. Veamos qué significa esto con rigor, si bien ya nos lo
podemos imaginar por los procedimientos aqúı seguidos.

Un espacio-tiempo dado por la variedad M y la métrica gµν se dice extendible si existen otro
espacio tiempo, definido por M y gµν , y una isometŕıa ϕ (es decir, un difeomorfismo que preserva

la métrica) de manera que ϕ : M → M con el contenido estricto ϕ(M) ⊂ M . De modo análogo,
diremos que es inextendible si no se dan las condiciones anteriores. En estas definiciones, al conectar
las métricas por isometŕıas se exige que estas sean formas definidas en la variedad de clase al menos
C2 para poder tener los tensores de curvatura bien definidos. Sin embargo, hay generalizaciones
del concepto de extensión que relajan esta condición y simplemente buscan que el segundo espacio
tenga una métrica continua [20]. Al margen de esto, para detectar si un espacio es inextendible, en
el sentido que aqúı se ha estipulado, se recurre precisamente a argumentos como los utilizados para
definir las singularidades, pues estos son en gran número de ocasiones lo que impiden encontrar
una métrica extendiendo la primera. Si hay una singularidad de la geometŕıa espacio-temporal, en
ningún caso podremos extender la métrica más allá de la misma.

Centrándonos en el ejemplo que nos ocupa, si recordamos el diagrama espacio-temporal de las
coordenadas de Kruskal-Szekeres para cada espacio con θ y φ constantes, se teńıa que este abarcaba
la región entre las dos hipérbolas en que se desdoblaba la singularidad en r = 0 en coordenadas
de Schwarzschild. De esta manera, y puesto que las geodésicas nulas en coordenadas de Kruskal-
Szekeres eran simplemente ĺıneas a 45o con los ejes, encontramos que en efecto este espacio es
geodésicamente incompleto para dicho género de geodésicas, pues todas empiezan o terminan en
una de dichas singularidades, y véıamos que estas se alcanzaban para valores finitos del parámetro
af́ın. Además, podemos concluir que nos encontramos en la extensión maximal, pues no podemos
extender el parámetro af́ın más allá de dichas hipérbolas utilizando una isometŕıa como hemos
indicado. La única forma que tenemos de extender las geodésicas es por medio de argumentos como
los que planteábamos en la sección 4.4. Sin embargo, como ya véıamos entonces, estos conllevan
serios problemas con respecto a su viabilidad, y en este caso se concluye que esta no es una opción
posible. Este tipo de argumentos son los que nos sirven para concluir que la extensión maximal de
la geometŕıa de Schwarzschild es, en efecto, la que nos da el elemento de ĺınea de Kruskal-Szekeres,
y que en r = 0 encontramos una singularidad intŕınseca al espacio-tiempo. Con esto, tenemos
identificados todos los elementos de la geometŕıa, y concluye nuestro análisis.
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6. Conclusiones

Tras discutir todas las cuestiones precedentes, se pueden extraer una serie de conclusiones sobre lo
que se ha conseguido en este trabajo.

En primer lugar, hemos logrado entender la forma de la métrica de Schwarzschild y discernir entre la
situación en que una métrica resulta singular por una mala elección del sistema de coordenadas que
describe la variedad frente a cuando verdaderamente indica la existencia de una patoloǵıa ineludible
en el espacio-tiempo. Numerosas soluciones exactas de las ecuaciones de Einstein tienen elementos
de ĺınea singulares en ciertos sistemas de coordenadas. Es importante entender las herramientas
matemáticas que se requieren para un tratamiento correcto de las mismas y para poder cambiar
las coordenadas a otras que nos permitan deshacernos de dichos comportamientos problemáticos,
si es posible, como hemos hecho aqúı.

En este caso, nos hemos centrado en la solución de Schwarzschild, para la cual hemos conseguido
encontrar la extensión maximal. Además, en el estudio de la misma, se ha podido explicar en
profundidad conceptos f́ısicos de gran importancia relacionados con los agujeros negros. El primero
consiste en el horizonte de eventos, el cual, en efecto, hemos visto que supone un punto de no retorno
para part́ıculas y fotones que lo atraviesen. Además hemos comprobado, que si bien un observador
inercial en el infinito espacial no consigue ver una part́ıcula atravesando dicho horizonte, el sistema
propio de la part́ıcula no impide en ningún caso que se atraviese dicho radio.

Por otro lado, gracias a la extensión maximal también hemos podido describir el puente de Einstein-
Rosen, que constituye una reparametrización concreta de la solución de Schwarzschild. Este nos ha
permitido investigar la posibilidad de extender trayectorias de geodésicas modificando la topoloǵıa
e identificando las singularidades pasada y futura. Si bien este fenómeno no constituye un agujero
de gusano al uso, su hallazgo fue pionero en el estudio de estas estructuras, que también cobran
gran relevancia en el contexto de los agujeros negros.

Finalmente, hemos podido concluir que el otro comportamiento patológico de la métrica de Sch-
warzschild se debe a una singularidad intŕınseca al espacio-tiempo. Hemos visto que la definición
de singularidad puede ser escurridiza, y que, aunque hay situaciones que sirven para apuntar a la
existencia de este fenómeno, como los escalares de curvatura que tienden a infinito, en general no
suelen ser criterios concluyentes. Sin embargo, śı hemos conseguido llegar a al menos una condición
necesaria para la existencia de singularidades: el criterio de incompletitud geodésica que veńıamos
observando desde las primeras secciones. Para ello, hemos justificado por qué esta situación śı es lo
suficientemente contradictoria con nuestra intuición f́ısica como para que se pueda considerar como
tal.

En definitiva, en este trabajo se ha conseguido dar una explicación de los conceptos fundamentales
relacionados con las f́ısica de los agujeros negros a través de la solución de Schwarzschild. Se sientan
de este modo las bases en las intuiciones f́ısicas y herramientas matemáticas que se pueden emplear
para el estudio de otros modelos más complicados y con caracteŕısticas que aqúı se han obviado:
por ejemplo, rotación o carga electromagnética.
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