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Introduccion a la fisica de los Agujeros Negros. Extensién maximal y singulari-
dades de la geometria de Schwarzschild.

Resumen:

En este trabajo, se pretende entender en profundidad el modelo de agujero negro que describe la
geometria de Schwarzschild. El elemento de linea que caracteriza esta geometria fue la primera
solucion que se encontré para las ecuaciones de Einstein en vacio. Dicha métrica describe la geo-
metria del espacio-tiempo en torno a un objeto masivo estatico y con simetria esférica. Veremos
que el sistema de coordenadas que escojamos para expresar dicha solucién es fundamental para en-
tender correctamente los fenémenos que se describen. Asi, a lo largo del trabajo, se ird trabajando
con diferentes cambios de coordenadas que nos permitan estudiar la fenomenologia que aparece en
esta solucion. Esto nos servird para introducir diferentes aspectos relacionados con la naturaleza
de los agujeros negos, por ejemplo, la nocién de horizonte de eventos, los agujeros de gusano o las
singularidades espacio-temporales.

Abstract:

In this work, we intend to understand the black hole solution described by Schwarzschild’s geometry.
The line element that characterise that geometry was the first solution found for Einstein’s equations
in empty space. Its metric tensor describes the space-time geometry around a massive object with
spherical symmetry. We will study that the coordinates system in which we express the solution is
crucial to properly understand the phenomena that appear. Therefore, in this work we will change
the coordinates several times so that we can achieve to describe the physical situations concerning
the Schwarzschild’s solution. This will allow us to encounter and examine interesting phenomena
regarding the black hole’s nature, such as the event horizon, wormholes or space-time singularities.
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1. Introduccion

Los agujeros negros constituyen uno de los fenémenos en los que se pone a prueba de manera directa
la teoria de la Relatividad General, y su estudio ha dado lugar al descubrimiento de numerosas
predicciones sorprendentes. Durante mucho tiempo, se considerd que estos eran un mero artificio
matematico que no tenia cabida en la realidad. Sin embargo, en la década de los 60, con el descu-
brimiento de objetos compactos fruto del colapso gravitacional como las estrellas de neutrones y
pulsares [1], se empezé a contemplar la posibilidad de que estos fueran una realidad fisica. A dia
de hoy, como veremos en este trabajo, cada vez parece haber menos dudas de que este fenémeno
existe en nuestro Universo, y los misterios que rodean su naturaleza siguen proporcionando nuevas
preguntas y retos para la Fisica.

Nosotros aqui volveremos a los origenes de la cuestion y estudiaremos la geometria de Schwarzschild,
que fue la primera que dio una descripciéon matematica de una situacién que podriamos identificar
con la presencia de un agujero negro. Esta solucién se obtiene para un modelo muy idealizado, que
realmente no se corresponde con la realidad fisica de los agujeros negros que se han observado.
Otras geometrias, que incluyen la posibilidad de que el cuerpo central esté cargado o se encuentre
en rotacién, se aproximan mas a dicha realidad. Sin embargo, en esta soluciéon de Schwarzschild se
encuentran reflejados los fendmenos mas importantes relacionados con la naturaleza de los agujeros
negros: el horizonte de eventos y la singularidad espacio-temporal. La eleccién de estudiar esta
geometria se debe a que su sencillez resulta muy til a la hora de realizar las disquisiciones tedricas
que desarrollaremos en el trabajo y de justificar las intuiciones fisicas que emanan de dicha teorfa.

Para conseguir todo esto, se estructura este trabajo de la siguiente manera. En la seccién 2 se obtiene
con detalle la geometria de Schwarzschild, que es la que describe el modelo que nos interesa. Ademas,
se estudian las particularidades del elemento de linea que la caracteriza, cuyos comportamientos
singulares se corresponden precisamente con el horizonte de eventos y la singularidad espacio-
temporal. Las dos secciones siguientes se orientan a buscar un sistema de coordenadas que consiga
describir bien la geometria en las inmediaciones del horizonte de eventos, pues, como veremos, la
solucién propuesta por Schwarzschild no lo consigue. Se obtienen asi las soluciones de Eddington-
Finkelstein (en la seccién 3) y de Kruskal-Szekeres (en la seccién 4). En este tltimo modelo se
describe por entero la geometria de Schwarzschild y podremos detallar todos los fenémenos que
predice. Finalmente, en la seccién 5 se estudia el concepto de singularidad espacio-temporal. Esta
cuestion es altamente no-trivial, asi que en este trabajo se abordard por medio de una discusién
conceptual de los puntos més importantes de la misma relacionados con el estudio de la geometria
de Schwarzschild. Revisaremos cudles son las patologias que nos permiten caracterizar la existencia
de una singularidad, para concluir su presencia en el interior del agujero negro de nuestro modelo.

2. Geometria de Schwarzschild

En esta primera seccion se estudiara la métrica de Schwarzschild, con el objetivo de comprender
algunas situaciones que aparecen en la geometria que describe. Como ya hemos comentado, esta
constituye la primera solucién a las Ecuaciones de Einstein en vacio encontrada histéricamente: fue
obtenida por Karl Schwarzschild en 1916 [2], tan solo unos meses después de que el propio Einstein
publicara estas ecuaciones.

2.1. Meétrica de Schwarzschild

La métrica de Schwarzschild pretende describir el campo gravitatorio con simetria esférica y estatico
que se genera en el espacio vacio alrededor de un objeto masivo que también tiene esta simetria.



Atendiendo a esto, para encontrar dicha solucion se procede como sigue. Se comienza buscando la
forma de una métrica espacialmente isotrépica. Para ello, se impone que esta solo dependa de los
invariantes bajo rotaciones que se pueden obtener con las coordenadas espaciales y sus diferenciales:

7.2, dz-dEf, I-dz7.

Ademds, la isotropia también implica que las funciones que actien como coeficientes de la métrica
solo puedan depender del tiempo y la distancia al origen r. De este modo, el elemento de linea debe
tener la forma siguiente:

ds* = A(t,r)dt* — B(t,r)dti - d¥ — C(t,r)(Z - dZ)* — D(t,r)dz>.

Haciendo un cambio a coordenadas esféricas, pasa a tener la siguiente expresion
ds®> = A(t,r)dt? — B(t,r)rdtdr — C(t,7)r*dr® — D(t,r)(dr* + r*sin® d6? 4 r% sin® d¢?).

De esta manera, absorbiendo el factor r en algunas de las funciones anteriores y redefiniendo
también la coordenada radial como 72 = D(r,t), se encuentra que la forma més general de una

métrica isotrépica debe ser

ds* = A(t,r)dt* — B(t,r)r dt dr — C(t,r)dr* — r*(df? + sin® d¢?).

Ahora, redefiniendo la coordenada temporal se elimina el término cruzado dt dr. Ademds, puesto
que buscamos que la métrica también sea estatica, se elimina la dependencia temporal en las
funciones que actiian como coeficientes de la métrica. Con todo, la forma més general de una
métrica isotropica y estatica es:

ds®> = A(r)dt? — B(r)dr? — r?(d6* + sin® 0d¢?). (1)

Obsérvese que este elemento de linea queda especificado por dos funciones de la coordenada r.
Ademds, su restricciéon a espacios de r y t constante es el elemento de linea de una esfera bi-
dimensional, lo que da cuenta de la isotropia que imponiamos. Puesto que en general B(r) no
es necesariamente la funcion unidad, no podemos interpretar la coordenada r como la coordena-
da radial euclidea del espacio tridimensional a la que estamos acostumbrados. Sin embargo, si se
corresponde con el valor que verifica que las esferas bidimensionales anteriores tienen area 4mr2.

Por 1ltimo, se impone que una métrica como esta sea soluciéon de las ecuaciones de Einstein en
vacio. En un espacio-tiempo cuatridimensional esto se reduce a imponer que el tensor de Ricci sea
nulo, pues tomando la traza en la ecuacién de Einstein en vacio sin constante cosmolégica se tiene
la siguiente cadena de implicaciones:

1

Ruy — 59wR=0= R—2R=-R=0= Ry, =0.

Calculando dicho tensor de Ricci para el elemento de linea (1) nos encontramos con que este es
diagonal, e igualando a cero dichas componentes diagonales llegamos a unas ecuaciones diferenciales
de segundo orden para A(r) y B(r). Se resuelven estas ecuaciones y se llega a que

A(r) =a (l—i—%), B(r) = (1—1—%2)_1,



donde ¢; y ¢2 son constantes de integracién. En el limite de campo débil, se puede demostrar (ver
[3]) que, si @ es el potencial gravitatorio newtoniano, se debe cumplir

A(r) 20
;o 5
c c
Ademads, en este limite, la coordenada r si puede aproximarse como la coordenada radial que
comentibamos. Para un cuerpo con simetria esférica y masa M, el potencial gravitatorio es ® =

—GM/r, lo que nos permite identificar las constantes de integracién. Con todo, se obtiene la
expresion:

c2r c2r

2GM 2GM\ !

ds® = ¢ <1 - G2> dt* — (1 L% > dr® —r? (d6® + sin® 0 d¢?) . (2)

Que es la conocida como métrica de Schwarzschild. Al sistema de coordenadas (¢,r,6,¢) se le
denomina en consecuencia coordenadas de Schwarzschild.

2.2. Caracterizacion de las coordenadas

En el presente texto se trabajara constantemente con cambios de coordenadas, pues dado el caracter
covariante de las Ecuaciones de Einstein, una métrica que es solucién de estas sigue siéndolo tras
someterla a un cambio de coordenadas. Una caracterizacion que siempre se puede establecer sobre
una coordenada z* en un punto P consiste en determinar si dicha coordenada es de género tiempo,
espacio o nulo. Esta clasificacion se corresponde de forma natural con el género del vector tangente
en el punto P a la curva coordenada en cuestién. De esta forma, se puede establecer simplemente
conociendo el signo del elemento g,,,, (sin suma) de la métrica en P. Para el convenio de signatura
que utilizaremos en este trabajo (+ — ——): si es positivo diremos que tiene género temporal; si es
negativo, espacial; y si se anula, género luz o nulo. En efecto, la curva coordenada asociada a la
coordenada p-ésima se puede parametrizar segin: zV(s) = 4,8, luego su vector tangente en cada
punto es u¥ = 5;’1, cuya norma al cuadrado es simplemente el coeficiente g,,, que se comentaba.

2.3. El agujero negro de Schwarzschild

Répidamente, observando el elemento de linea (2), se encuentra que no esta bien definido en:

2GM
r=0 & r=rgi=—5—,

C

donde este segundo valor es el conocido radio de Schwarzschild. Cuando se dice que no estd bien
definida, esto significa que no permite obtener la 2-forma correspondiente en los espacios tangentes
de puntos con dicha coordenada radial, y por tanto, tampoco establecer la geometria del espacio-
tiempo alli. Sin embargo, como la métrica es sélo véalida en el exterior del cuerpo que genera
el campo gravitatorio, estos comportamientos singulares no tienen por qué ser necesariamente
problemaéticos, pues el radio de Schwarzschild es normalmente mucho menor que el radio del objeto
(por ejemplo, en el caso de la Tierra, este es menor a 1 cm.). Para resolver las ecuaciones de
FEinstein en el interior del cuerpo masivo, se requiere conocer un tensor energia-momento apropiado
que describa la distribucion de masa esférica y estatica. Estas soluciones se denominan de forma
natural soluciones interiores.

A dia de hoy sabemos que hay estrellas muy masivas que, en la ultima fase de su desarrollo
termonuclear, colapsan gravitacionalmente por debajo de su radio de Schwarzschild [1]. Cuando
tenemos simetria esférica en este proceso, una vez sucede esto somos incapaces de observar qué



sucede con el objeto masivo [5], y por tanto decimos que se ha originado un agujero negro. En este
trabajo concreto, se trabajara con el modelo del agujero negro de Schwarzschild, que no tiene carga
ni momento angular. A partir de ahora, estudiaremos el elemento de linea (2) con la coordenada
r recorriendo todos los posibles valores que pueda tomar: r > 0, pues esta es la geometria que
(debidamente truncada) encontrariamos en el espacio vacio en torno a dicho tipo de agujero negro.
Es mas: el teorema de Birkhoff establece que la soluciéon de Schwarzschild es la tinica posible para
las ecuaciones de Einstein para cualquier distribucion esférica de masa (sin necesidad de que sea
estatica). Asi, es importante conocer bien cudles son los fenémenos que describe la misma.

2.4. Las singularidades de la métrica de Schwarzschild

Considerando por tanto el elemento de linea (2) con sus coordenadas definidas en el mayor dominio
posible, estudiemos en més detalle los radios probleméticos. Los comportamientos singulares de
la métrica pueden deberse o bien a una mala eleccién de coordenadas, o bien a una verdadera
singularidad en la geometria del espacio-tiempo. Una forma de distinguir en cudl de estas situa-
ciones nos encontramos consiste en calcular los escalares de curvatura asociados a la métrica y
comprobar si también son singulares en los puntos que nos interesan. En caso de que estos hereden
el comportamiento singular, al tratarse de elementos geométricos independientes de coordenadas,
no podremos revertir esta situacién via cambios de coordenadas. No obstante, esto no es suficiente
para concluir que tenemos una singularidad espacio-temporal, pues su naturaleza es mas sutil, y
se discutira en las 1ltimas secciones de este trabajo. Por el contrario, si adquieren valores finitos,
si podremos asociar la singularidad en la métrica a un mal comportamiento de las coordenadas, e
intentar solucionar esto buscando otros sistemas que describan bien la geometria en esos puntos.

Para la métrica de Schwarzschild, sabemos que el tensor de Ricci es nulo, pues es lo que imponfamos
para hallarla, luego también el escalar de Ricci se anula. Sin embargo, a partir del tensor de
Riemann, podemos obtener un escalar de curvatura conocido por escalar de Kretschmann:

12 72
76

rvo _
RuuaﬁRM F = ’
que toma un valor finito para r = rs pero es singular en » = 0. Ante esto, nos centramos en
r = rg para intentar ver como podriamos solucionar el comportamiento de las coordenadas ahi.
Encontramos que suceden dos fenémenos interesantes.

En primer lugar, intentemos ver qué sucederia al cruzar r = r,;. En la region r > rg encontramos
que la coordenada t es de género tiempo mientras que las coordenadas r, 8, ¢ son de género espacio.
De hecho, en esta zona podemos dotar a estas coordenadas de un significado fisico razonable: ya
comentamos el que tenian 0, ¢ y r, mientras que la coordenada ¢ se corresponde con el tiempo
propio de un observador inmovil en el infinito espacial. Sin embargo, si consideramos la regién
r < rs, los coeficientes g y grr cambian de signo, luego t pasa a tener género espacio y r género
tiempo. Este cambio de género se debe a que gy se anula en r = r; y g, se dispara a infinito al
anularse también su denominador.

Veamos en segundo lugar cémo este comportamiento en los coeficientes de la métrica da lugar
a problemas con las geodésicas cuando nos aproximamos por la regién regular al radio r = r;.
Estudiemos las geodésicas asociadas a un movimiento radial (§ = cte. y ¢ = cte.) en la regién
r > rs. Con respecto a las geodésicas nulas, la condicién de la capa de masas nos da una ecuacion
diferencial el ¢ y r que se puede integrar facilmente. Encontramos asi que estas curvas verifican las
siguientes ecuaciones:



ct =r+rsln = 1]+ cte. (foton saliente),
Ts

ct=—r—rgln TL — 1| 4 cte. (fotén entrante).
S

Observamos que han heredado el comportamiento singular en r = r; de la métrica. De este modo,
en un diagrama (ct,r) encontraremos que las tangentes a la trayectoria de un fotén tienen una
pendiente que tiende a infinito conforme nos acercamos a r = r5. Esto hace que los conos de luz se
hagan mas estrechos cuanto mas nos acercamos a este radio, de modo que también las trayectorias
de particulas masivas acercandose a ese radio deben hacerse cada vez mas verticales, sin sobrepasar
r = 15. Si ahora consideramos un observador en el infinito espacial, encontramos que este ve que
la particula tarda un tiempo infinito en alcanzar r = r,. Ello se debe a que las direcciones iniciales
de los fotones que emite una particula acercandose a dicho radio son cada vez més verticales, luego
cada vez tardan mas en llegar a dicho observador. Veamos ahora cémo es este trayecto desde el
punto de vista de la particula, es decir, estudiemos las geodésicas temporales. Si consideramos una
particula que parte del reposo desde un radio finito ro > rg, se encuentra que la ecuacion radial de
su trayectoria respecto al tiempo propio 7 debe cumplir:

donde se toma la constante de integracién de manera que r(7 = 0) = rg y se considera la trayectoria
entrante. De este modo tenemos que la particula tardaria un tiempo propio finito en llegar a r = r;
y ar = 0. Esto parece contradecir el resultado que acabamos de obtener, por el cual un observador
en el infinito nunca llegaba a ver la particula cruzar el radio » = rs. Ante esto, lo que debe suceder
es que la particula si consigue cruzar este radio, pero la coordenada ¢ no es capaz de predecir
bien este comportamiento. Esto se debe a que dicha coordenada describe el tiempo propio de un
observador asintdtico, lo cual difiere enormemente de lo que ve un observador en caida libre hacia
el radio de Schwarzschild. Ademas, también podemos obtener una ecuacién como la anterior que
relacione t y r en estas trayectorias. En ella se predice que se requiere un tiempo infinito para
alcanzar r = r; pero también, que en la regién r < rg el tiempo resulta decreciente conforme nos
acercamos a r = 0.

Estas observaciones nos dan pistas sobre como fallan las coordenadas al describir la geometria
conforme nos acercamos a r = r,. Para poner fin a estos problemas, buscaremos entonces que
en las nuevas coordenadas los coeficientes de la métrica no se anulen ni tengan comportamientos
singulares.

3. Coordenadas de Eddington-Finkelstein

En primer lugar estudiaremos un cambio de coordenadas que, si bien no logra resolver todos los
problemas expuestos sobre las geodésicas, sirve para ilustrar el procedimiento que se seguird a
la hora de buscar el cambio que si lo haga. Como acabamos de ver, las geodésicas de fotones
y particulas masivas que se mueven radialmente parecen “cruzar” el radio r = rs en t = +oo.
Ante esto, parece razonable intentar cambiar el tiempo por otra coordenada cuyo valor tengamos
controlado en las geodésicas, por ejemplo, buscandola de modo que resulte constante en ellas. En este
caso, utilizaremos para sondear el espacio-tiempo trayectorias de fotones moviéndose radialmente.
Roger Penrose fue la primera persona en hacer explicitamente los cambios de coordenadas que
exponemos en esta seccién [5], aunque atribuyé el mérito de la idea a Arthur S. Eddington [6] y
David Finkelstein [7], de ahi el nombre de las coordenadas.



3.1. Coordenadas de Eddington-Finkelstein avanzadas

Teniamos que la geodésica de un fotén entrante moviéndose radialmente estaba dada por:

ct=—-r—rgln

r
— — 1| + cte.
Ts

Atendiendo a la discusién anterior, tomamos la constante de integracién como una nueva coorde-
nada:

r

Ts
que por motivos histdricos se denomina pardmetro de tiempo avanzado. Cambiando la coordenada
t por esta, encontramos que la métrica pasa a tener la siguiente forma:

p=ct+r+rsln

ds® = (1 - 3) dp? — 2dpdr — r2(d6? + sin 0 dg?). (4)
.

Parémonos un momento a analizar el cambio de coordenadas efectuado. Podria resultarnos extrafio
puesto que no es un difeomorfismo en r = r,, luego no es un cambio de coordenadas valido para ese
radio. Sin embargo, nos basta con que lo sea en la regién regular para la métrica de Schwarzschild
en las coordenadas (t,r,0, ¢). Con este cambio, conseguimos una métrica regular en 0 < r < +00 a
partir de otra valida en ry < r < 400, de manera que ambas representan el mismo espacio-tiempo
en esta segunda regién. Asi, hemos obtenido a una nueva variedad semi-riemanniana que contiene
la region no singular de la geometria de Schwarzschild como subespacio propio. En esta situacion
decimos que hemos encontrado una extension de la métrica.

Veamos con detalle qué hemos conseguido solucionar. En este nuevo sistema de coordenadas r
resulta una coordenada nula, al igual que p en r = r,, donde cambia de género, de temporal
a espacial. De este modo tenemos un elemento de linea sin comportamientos singulares en 0 <
r < 400, pero con un coeficiente que se anula para r = rg. Este hecho va a dar lugar a un
comportamiento singular en las geodésicas de fotones radiales salientes, que son las que no hemos
examinado. En efecto, de la condicién de la capa de masas si € y ¢ se toman constantes, se tiene
que las geodésicas nulas deben cumplir:

2
(-2 (2 -0

lo que da lugar a dos posibles soluciones:

d

d—p =0 = p=cte., fotén entrante,
r

d re\ —1 r

P _ (1 — —S> = p=2r+2rsln|— — 1| + cte., fotén saliente.

dr r Ts

Y asi, observamos que la segunda solucién sigue dispardandose a infinito cuando r = rs.

Al margen de esto, se suele completar este procedimiento definiendo una coordenada temporal
(para evitar tener una coordenada nula, que es menos intuitiva a nivel fisico) dada por:

ct’:p—r:ct+rslnr—1‘. (5)
Ts
Con lo que el elemento de linea adquiere la forma:
S 2 S S .
ds® = ¢ (1 - L) dat”? — 2 qpar — (1 + T—) dr® — r2(d9? + sin2 0 dg?). (6)
r r r



Estas coordenadas (¢,r,0,¢) se denominan coordenadas avanzadas de Eddington-Finkelstein. Po-
demos preguntarnos por la estructura de los conos de luz de su diagrama (ct’,r). Las ecuaciones
para fotones entrantes y salientes que se mueven radialmente en estas nuevas coordenadas se pueden
obtener facilmente de la condicién de capa de masas y son:

ct' = —r + cte., fotén entrante,

ct' =r+2rgln

r_ 1‘ + cte., fotdn saliente.
Ts

Ante esto, encontramos que las trayectorias de los fotones entrantes son simplemente rectas que
cruzan la recta r = rg por donde deban. Por su lado, las de los fotones salientes siguen disparandose
a t' = —oo cuando r = r,. Con este diagrama, se predice que una particula o fotén que cae hacia
r = 0 puede cruzar sin problema el punto r = r5. Sin embargo, en este radio, la estructura de los
conos de luz cambia, de modo que el futuro siempre estd orientado hacia la singularidad r» = 0.
Una particula o fotén que se mueva radialmente empezando con r < rg no podra escapar jamas
a la regién r > r, sin violar causalidad. Ademas, si observamos las ecuaciones para las geodésicas
nulas salientes, si una particula emitiera fotones desde la regién r < rg, estos nunca alcanzarian a
un observador en r > rs. De este modo, se hace intuitivo el nombre agujero negro, el cual se define
de manera mas formal como un objeto compacto que tiene un horizonte de sucesos, es decir, una
superficie con las caracteristicas de la dada por r = r.

3.2. Coordenadas de Eddington-Finkelstein retardadas

En realidad, la eleccion de las geodésicas de fotones entrantes ha sido arbitraria, y se podria repetir
todo el proceso expuesto anteriormente considerando las de fotones salientes. Sin reparar tanto en
los detalles, se definiria un pardmetro de tiempo retardado dado por

gq=ct—r—rsln

T—l', (7)

Ts

y a partir de este una nueva coordenada temporal definida como

ct* =q+r=ct—rsln

’"—1‘. (8)

Ts

De este modo en las coordenadas (t*, 7,0, ¢), denominadas coordenadas de Eddington-Finkelstein
retardadas, el elemento de linea de Schwarzschild seria simplemente la inversién temporal del que se
obtenia con las coordenadas avanzadas. Trazando un diagrama (ct*, r) y estudiando la estructura de
conos de luz, encontramos algunos cambios interesantes respecto a la situacién previa. En este caso,
las trayectorias de fotones salientes son rectas que cruzan sin problema el radio = r. De hecho, por
cémo se configuran los conos de luz, cualquier particula (o fotén) en la regién r < rs debe salir de la
misma, alejandose siempre de r = 0. Este fenémeno fisico se denomina agujero blanco, y resulta algo
extrano con respecto a la intuicién fisica que tenemos de la fuerza gravitatoria, que siempre resulta
atrativa con respecto a un cuerpo masivo. Mas adelante estudiaremos qué significa la prediccién
de este fenémeno, contrario al obtenido con las coordenadas avanzadas. Ademads, realizando un
desarrollo analogo al caso anterior, se obtiene que con este cambio de coordenadas las trayectorias
de fotones entrantes siguen teniendo comportamientos singulares en r = r,, y también se mantiene
el cambio de género en la coordenada temporal.



4. Coordenadas de Kruskal-Szekeres

Hemos visto cémo con las coordenadas de Eddington-Finkelstein, si tomabamos una coordenada
basada en las geodésicas entrantes (respectivamente salientes) de fotones moviéndose radialmente,
conseguiamos resolver los problemas relacionados con dicho grupo de geodésicas, manteniéndose
los problemas asociados a las salientes (respectivamente entrantes). Por tanto, es natural que el
préximo sistema de coordenadas que estudiemos introduzca dos coordenadas nuevas en lugar de
una, una basada en las geosésicas salientes, y otra en las entrantes. Esta fue la idea que tuvieron
simultdaneamente Kruskal [3] y Szekeres [9] en 1960, y que exponemos en esta seccion.

4.1. Transicién desde las coordenadas de Eddington-Finkelstein

Aprovechando el trabajo de la seccién anterior, una primera apuesta razonable seria introducir
simultdneamente los pardmetros de tiempo avanzado y retardado. La métrica de Schwarzschild
quedaria de la forma:

ds® = <1 — %) dp dq — %(d6? + sin® 0d¢p?), (9)
donde r es una funcién de p y ¢, definida de forma implicita por

T—l‘.

Ts

1
§(p—Q):T+T51D

En este sistema de coordenadas, p y ¢ son coordenadas nulas, pero seguimos teniendo un coeficiente
en la métrica que se anula en r = r,. Sin embargo, lo que hemos ganado es que precisamente este
se encuentra en un término cruzado de coordenadas nulas, luego ahora podemos intentar redefinir
estas coordenadas para hacerlo desaparecer, cosa que no podiamos conseguir en las coordenadas de
Eddington-Finkelstein. Observando la funcién implicita que define la coordenada r, tenemos que

se cumple
P—q\ _ r r
exp o = exp - i 1),
S S S

lo que nos sugiere tomar un cambio de coordenadas como el siguiente:

_ p _ q
ey —_— = — — 10
P =exp <2rs> , q exp ( 27"5) , (10)

para el cual se obtiene un elemento de linea dado por

o 471 r _ g 20102 ) 2
ds = exp| - dp dq — r*(df* + sin” 0d¢~).

Ts

En él, de nuevo, el valor de r viene determinado por la funcién implicita

__ r T
() ()
Ts Ts

En estas nuevas coordenadas hemos conseguido no tener ningtn coeficiente con comportamiento
problemético. Sin embargo, con intencién de tener una mayor intuicion fisica sobre el significado
de las coordenadas, hacemos un tltimo cambio, definiendo las coordenas temporal v y espacial u

dadas por
1, _ 1, _
v=50+a), u=50—a. (11)



Con todo, el elemento de linea en las coordenadas de Kruskal-Szekeres (v,u,0,¢) queda:

9 47"? r 2 2 2/ 192 ) 2
ds :Texp —— | (dv* = du®) — r*(df* + sin” Od¢~). (12)

Ts

Y el valor de r a partir de estas tultimas coordenadas se obtiene de la ecuaciéon implicita

u? — % = (: - 1) exp (:) . (13)

Para concluir, prestemos algo de atencién al elemento de linea (12). Si restringimos este a espa-
cios con 6 y ¢ constantes, obtenemos una métrica de dos dimensiones conforme a la métrica de
Minkowski. Esto cobrara relevancia cuando estudiemos la estructura de los conos de luz en estas
coordenadas.

4.2. Relacién con las coordenadas de Schwarzschild

Intentemos recuperar informacién sobre la geometria que describe el elemento de linea en las coor-
denadas de Kruskal-Szekeres. Para ello, expresemos las coordenadas u y v en funcién de las coor-
denadas de Schwarzschild ¢ y r. Haciendo las cuentas del cambio de coordenadas de la métrica,
encontramos que las siguientes relaciones nos permiten transformar el elemento de linea de Kruskal-
Skeres en el de Schwarzschild. Se distingue entre r > 74, donde se tiene

T T ct
= — | 4+/— —1 sinh | —

v exp < o > - sin (27’5 ) ,
t

U = exp T T 1 cosh [ = ,
27 T 27

r r ct
= _ 1— — h{ —
v exp <27“s> s cos (27’5 > ,
t
U = exp T 1— 2 sinh [ 2.
2rg Ts 27

Ademas, por la ecuacién (13), que debe verificarse entre las coordenadas u y v de Kruskal-Szekeres
y la coordenada r de Schwarzschild, encontramos que la primera relacién (14) es valida en el
cuadrante dado por u > |v|, mientras que la relacién (15) es valida en el dado por v > |ul.
Llamaremos al primero cuadrante I y al segundo, cuadrante II. En los cuadrantes simétricos a estos,
que denominaremos cuadrantes I’ y I’ respectivamente, se pueden establecer las mismas relaciones
pero con un signo negativo en ambas. Ante esto, lo primero que observamos es que la variedad
que describen las coordenadas de Kruskal-Szekeres contiene dos espacio-tiempos de Schwarzschild.
Esto no solo se ve a través de los cambios de coordenadas que acabamos de exponer, sino que
en esta seccién encontraremos que los fenémenos descritos por la geometria de Schwarzschild se
desdoblan en las coordenadas de Kruskal-Szekeres. Por ejemplo, ya podemos ver como aparecen dos
regiones “exteriores”, es decir, asociadas a r > r4; v dos regiones “interiores”, asociadas a r < r;
de la geometria de Schwarzschild. De este modo, las coordenadas de Schwarzschild constituyen un
sistema de coordenadas local de una parte del espacio-tiempo de Kruskal-Szekeres.

(14)

y 7 < rg, donde se encuentra

(15)
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Dicho esto, pasemos a estudiar cémo seria el diagrama espacio-temporal en las coordenadas de
Kruskal-Szekeres. En primer lugar, observamos que las trayectorias nulas radiales (ds? = df =
d¢ = 0) responden a la ecuacién

v = *u + cte.,

es decir, son rectas que forman £45° con los ejes. Esto es una manifestacion de que la restriccion
de la métrica (12) a subespacios con 6 = cte. y ¢ = cte. es conforme a la métrica de Minkowski. De
este modo, sus conos de luz son como los de la relatividad especial, lo cual facilita mucho la tarea
de entender las relaciones causales entre sucesos en el diagrama. Las geodésicas que “apuntan hacia
arriba”, es decir, cuya tangente forma un angulo menor a 45° con el eje v son de tipo temporal,
mientras que las que apuntan “hacia fuera” son de tipo espacial.

Pasemos ahora a estudiar qué forma adquieren en este diagrama los hiperplanos con r constante del
espacio-tiempo de Schwarzschild. Atendiendo a la ecuacién (13), si r es constante entonces también
resulta constante u? — v2, luego estos espacios toman la forma de hipérbolas en el diagrama (v, u).
En particular, contemplemos lo que sucede con los radios problematicos que estabamos estudiando.
Por un lado, el radio r = r; da lugar a las rectas v = +u, las cuales son las asintotas del conjunto de
hipérbolas que representan los espacios de r constante y también suponen el limite entre las cuatro
regiones que distinguiamos anteriormente. Por su lado, y quizd més interesante, la singularidad en
el punto r = 0 se desdobla ahora en las hipérbolas v = £v/u? + 1. Observamos que estas curvas

verifican
dv U

du u? +1
luego son de género espacial, situdndose una en la region pasada I’ y otra en la futura II. Obsérvese
la enorme diferencia con respecto a la situacién anterior: en el diagrama (ct,r) de las coordenadas

de Schwarzschild esta singularidad quedaba representada por una recta de género temporal que
marcaba el origen de coordenadas.

<1,

Finalmente, veamos qué forma adquieren en este diagrama los espacios con t constante. A partir
de las relaciones del principio de esta seccion, se puede ver que

v/u sir >,

ct
tanh (27“s> - { u/v sir<rs, (16)

luego establecer t = cte. se corresponde en las coordenadas de Kruskal-Szekeres con rectas de
v/u = cte. que pasan por el origen. La recta que se corresponde con t = —o0 es u = —v, mientras
que la que se corresponde con t = +00 es u = v. Ambas coinciden con las rectas que marcaban
r=Ts.

4.3. Dos universos, agujeros blancos y agujeros negros

Habiendo hecho la discusién previa, podemos pasar a estudiar como se relacionan las regiones del
diagrama y qué representan. Graficamente, la situacién se recoge en la figura 1. Por la estructura
de los conos de luz, las regiones I’ y II’ son inaccesibles desde I y II. Ademds, como ya hemos
mencionado, I y I’ se corresponden con regiones exteriores al radio de Schwarzschild en la geo-
metria del espacio-tiempo. Estas constituyen dos universos asintoticamente planos diferentes, que
en principio, solo parecen poder conectarse en el origen del diagrama (u,v), en el que encontramos
un fenémeno que estudiaremos en la seccién siguiente. Por su lado, las regiones II y II’ se corres-
ponden con la zona interior al horizonte de eventos. Sin embargo, estas regiones interiores predicen
comportamientos fisicos opuestos entre si: cualquier particula o fotén en la regién II’ escapa de esta
hacia las regiones I y I’, mientras que cualquier particula o fotén que acceda a la regién II debe
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acabar su trayectoria en la singularidad futura. Asi, la primera se corresponde con el fenémeno que
denominabamos agujero blanco, mientras que la segunda es el ya familiar agujero negro.

i

«
-
“ct=2p
e
" Radially
——— infalling

__-ct=p particle

Figura 1: Diagrama espacio-temporal en coordenadas de Kruskal-Szekeres. Se reflejan las cuatro
regiones caracteristicas, las hipérbolas correspondientes a trayectorias con r = cte., las rectas
asociadas a trayectorias con t = cte. y la trayectoria de una particula que se mueve radialmente
cayendo a la singularidad futura. Por tltimo, p es un pardmetro tal que ry = 2u. Extraida de [3].

Obsérvese que hemos conseguido obtener es una mayor intuicién fisica sobre lo que puede repre-
sentar este agujero blanco. Deciamos en la secciéon anterior que esté fenémeno predicho por la
Relatividad General podia parecernos extranio por las intuiciones fisicas que tenemos sobre cémo
actia la gravedad. Sin embargo, el diagrama de Kruskal-Szekeres revela que no podemos “caer” en
un agujero blanco: un agujero blanco solamente puede existir en el pasado, luego no hay incongruen-
cia con nuestra intuicién en este sentido. Aun asi, el hecho de que la geometria de Schwarzschild
conlleve la existencia de dos universos distintos ha perturbado a investigadores y tedricos, llevando a
nuevas propuestas sobre como interpretar el agujero blanco. Exploraremos algunas interpretaciones
de dicho fenémeno en la seccién siguiente.

Finalmente, ;existen realmente estos fendémenos que describimos? Actualmente, tenemos evidencias
suficientes que apoyan la existencia de agujeros negros. Por ejemplo, a través de las observaciones
de emisiones de rayos X en sistemas binarios donde el objeto compacto mayor es un agujero ne-
gro [10], el famoso experimento que confirmé la existencia de ondas gravitacionales gracias a un
fenémeno de colisién de dos agujeros negros de masa estelar [11], o el también conocido experimen-
to que permitié obtener una imagen de la fotoesfera del agujero negro en el centro de la galaxia
MB87 [12], entre muchos otros. Sin embargo, no podemos decir lo mismo de los agujeros blancos.
Como ya hemos indicado, se ha concluido que los agujeros negros pueden aparecer al producirse
el colapso gravitacional de objetos muy masivos, pero no se conoce un proceso de formaciéon tan
claro para el caso de los agujeros blancos. En cuanto a la detecciéon de fenémenos compatibles con
sus caracteristicas, se ha propuesto asociar ciertas observaciones de explosiones de rayos gamma
[13] como la detecciéon GRB 060614 de la NASA, a la expulsién de materia que conlleva un agujero
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blanco. Sin embargo, esta interpretacion no termina de ser concluyente para afirmar que se trata
en efecto de agujeros blancos.

4.4. El puente de Einstein-Rosen

En la discusién sobre cémo es la geometria descrita por las coordenadas de Kruskal-Szekeres,
encontrabamos que se predecian dos universos asintoticamente planos diferentes, cuyo tinico punto
de contacto se tiene en el origen del diagrama (v, ). En esta seccién, el objetivo consiste en describir
un fendémeno interesante que predice la geometria de Schwarzschild con respecto a la relacién entre
dichos universos. Para ello, comenzaremos estudiando la geometria de la hipersuperficie espacial
v = 0, que se extiende desde u = —oo hasta u = +00, y que a su vez se corresponde con un espacio
en el que ¢ = 0 (basta con ver las relaciones de la seccién 4.2). Recordemos que en el diagrama
(v,u) cada punto en realidad representa una 2—esfera, pues los dngulos 6 y ¢ se han suprimido
del mismo. Tomando ademds la restriccién al plano ecuatorial de dicha esfera, es decir § = 7/2, el
elemento de linea adquiere la forma:

3
ds® = _Ars exp (_r) du® — r’d¢?. (17)

r Ts

Podemos reinterpretar esta métrica (cambidndola de signo) como la de una variedad sumergida
en un espacio euclideo, lo cual nos permite obtener informaciéon geométrica sobre qué representa.
Observemos, antes de nada, que al movernos sobre la hipersuperficie v = 0 desde u = —o0 a
u = 400 el valor de r decrece hasta un valor minimo r = r, y luego vuelve a aumentar su valor.
Dicho esto, pasemos a ver cémo seria el espacio descrito por una métrica como la opuesta de (17).
Para ello, la expresamos en funcion de las coordenadas r y ¢, obteniendo

-1
do? = (1 . %) dr? + r2dg?. (18)

Ahora, suponemos conocido un sistema de coordenadas de la variedad vista en R? dado por 2%(r, ¢),
con i = 1,2,3, de manera que las coordenadas x’ se pueden ver como coordenadas del espacio
euclideo tridimensional en cuestion. Por la simetria axial que presenta el elemento de linea (17) es
util considerar que dichas coordenadas son en nuestro caso las coordenadas cilindricas: (p, ¢, z). En
estas coordenadas, el elemento de linea del espacio euclideo plano tiene la forma

ds® = dp* + p*de® + d2°.

Ademi4s, dada dicha simetria, también podemos tomar el sistema de coordenadas de la superficie
que queremos describir de la forma

p=pr), ¢=9¢, z=2z(r).

De esta manera, restringiendo la métrica del espacio euclideo a nuestra superficie, tenemos que esta

debe cumplir
dp 2 dz\?
do® = | — —
|+ (5)

y que asimismo debe ser igual a (18). Ante esto, obtenemos que p = r y que
dp 2 dz\? dz\? re\ 1
o ) 14 () = (1 - 7) .
<dr> + (dr) + dr T
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La solucién de dicha ecuacién nos da la ecuacién implicita

2(r) = /4rs(r —rs) + cte.

que describe una superficie en un espacio tridimensional representada en la figura 2. Obsérvese que
se ha suprimido un grado de libertad al establecer § = 7/2, luego realmente cada circuferencia de
radio 7 en dicha figura representa una esfera de superficie 4712, De este modo, la situacién fisica
que se obtiene consiste en dos universos asintoticamente planos idénticos pero diferentes que se
unen a través de un puente de Eintein-Rosen con radio r = rs. Esta situacién fue descrita por
primera vez en [11]. Aunque las ecuaciones de Einstein fijan la geometria local del espacio-tiempo,
no permiten obtener informacién sobre la topologia del mismo, luego otra posible interpretacion de
lo que se obtiene para el espacio v = 0 es un puente de Einstein-Rosen que conecta dos regiones
asintéticamente planas lejanas entre si de un mismo Universo.

@=constant u=constant

Figura 2: La estructura del puente de Einstein-Rosen, extraida de [3]

En cualquiera de los casos anteriores, una de las caracteristicas de este puente es que es dinamico.
Deciamos al principio de este texto que la geometria de Schwarzschild se buscaba de modo que
fuera estatica. Si observamos esto con mas cuidado, encontramos que es cierto tan solo en la region
externa al horizonte de eventos, donde ¢ es la coordenada temporal, y en efecto el elemento de linea
no depende de dicha coordenada y es invariante bajo su inversién. Sin embargo, en la regién interior
las coordenadas r y t cambian sus papeles, de manera que el espacio-tiempo en esta zona deja de
ser estatico y evoluciona con la nueva coordenada temporal. Asi, volviendo a nuesta hipersuperficie
v = 0 en las coordenadas de Kruskal-Szekeres, se observa que a medida que pasa el tiempo, parte
de este espacio entra en la regién Il y comienza a cambiar. La forma de la hipersuperficie conforme
se adentra en esta regién II es cualitativamente la misma que la descrita en la figura 2, aunque la
“garganta” del puente se estrecha. Al llegar a v = 1 el puente se ha estrechado tanto que ambos
universos estan unicamente en contacto a través de sus singularidades en r = 0, e inmediatamente
después se desconectan, cada uno manteniendo una singularidad. Como la soluciéon de Kruskal-
Szekeres es simétrica en v encontramos el mismo comportamiento para valores negativos de esta
coordenada.

Asi, poniendo todo en conjunto, se tiene la siguiente situacién: se comienza con dos universos
asintéticamente planos desconectados, cada uno con una singularidad en r = 0. Conforme pasa
el tiempo, ambos se juntan por dichas singularidades y se forma un puente de Einstein-Rosen no
singular que los conecta. Este puente se hace cada vez mas amplio hasta alcanzar su maximo radio
r = rs y luego se estrecha hasta desaparecer, retornando a la situacién de partida. Asi, como pre-
veniamos, este puente nos permite reinterpretar la naturaleza del agujero blanco, pues identifica las
singularidades pasada y futura. De este modo, nos podria permitir extender las geodésicas (veremos
qué significa esto con més cuidado en la préxima seccién), es decir: suponer que la trayectoria de
una particula que cayera en la singularidad de la regién II, emergeria de la singularidad pasada
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y serfa expulsada a la region II’. Sin embargo, hay serias objecciones a que esto pueda realizarse,
y aun en caso de que pudiéramos suponerlo, puede resultar que fisicamente no tenga cabida que
un observador atraviese la singularidad. El primer problema que aparece en este sentido es que
no hay un mecanismo de formacién fisico claro para esta estructura. Ademds, en caso de que lo
hubiera, el proceso de formacion y destruccién de la garganta es demasiado rapido para que se
pueda cruzar. Por otro lado, la singularidad en r = 0 constituye una regién del espacio en la cual la
curvatura, como ya hemos visto, se hace infinita. Ello sugiere que las fuerzas de marea también se
hacen infinitas en este punto, aunque poder concluir esto requiere un desarollo matematico sutil.
Estas fuerzas de marea infinitas destruirian cualquier cuerpo con extension que pasara por alli.
Adicionalmente, lo que si podemos asegurar es que las ecuaciones de Einstein pierden su validez en
esta zona, luego cualquier hipdtesis que se realice sobre qué ocurre ahi no tendré respaldo fisico:
simplemente constituye una hipétesis matemaética realizada ad hoc. Finalmente, existen una serie
de cuestiones concernientes a las condiciones de energia que se deben cumplir que imposibilitan
que se pueda cruzar esta garganta. Algunos de los problemas que acabamos de exponer se pueden
solucionar en otros tipos de estructuras: los agujeros de gusano (ver [15]) que tienen geodésicas
definidas para todo tiempo en ambos universos de la solucién. Sin embargo, este asunto escapa del
objeto de este texto, por lo que no ahondaremos mas en él

5. Extensiones maximales y singularidades

Todos los cambios de coordenadas que se han ido realizando hasta ahora han ido encaminados a
“solucionar” los problemas de la métrica. Para ello, hemos buscado espacio-tiempos con elementos
de linea regulares que contuvieran las regiones no singulares de las variedades con elementos de linea
mal definidos como subespacios propios. Al llegar al sistema de coordenadas de Kruskal-Szekeres,
hemos dado por concluido este proceso, pero no hemos reflexionado sobre por qué esta solucién es
la mejor a la que podemos aspirar. La realidad es que esta cuestién estd intimamente relacionada
con la naturaleza de las singularidades intrinsecas de la geometria espacio-temporal, como la que
no hemos conseguido sortear en la métrica de Schwarzschild para r = 0. El propédsito de esta
seccion serd abordar esta cuestion y dar una base tedrica sobre cémo podriamos caracterizar estas
singularidades para finalmente definir el concepto de extension maximal, que es precisamente lo
que representa la solucién de Kruskal-Szekeres.

5.1. Algunas intuiciones sobre singularidades espacio-temporales

En el proceso de intentar dar con una caracterizacién de lo que es una singularidad espacio-temporal
se ha llegado a multiples definiciones, para las que luego se han encontrado contraejemplos [16]. Asi,
el propésito de las dos préximas secciones serd seguir la estela de dichos intentos para terminar con
el criterio mas aceptado para detectar singularidades del espacio-tiempo, y entender sus posibles
problemas. Sin embargo, no se desarrollara hasta las tltimas consecuencias el aparataje mateméatico
involucrado en la versiéon més general de esta definicién, pues requiere un esfuerzo que escapa del
objetivo de este texto. Para nuestro ejemplo de la métrica de Schwarzschild, basta con quedarnos
con un caso menos general que podemos manejar mejor.

Antes de todo esto, una reflexién sobre de dénde vienen algunos problemas conceptuales asociados a
la definicién de singularidad. Principalmente, estos residen en querer asociar la singularidad a “algo”
situado en un lugar del espacio-tiempo, como se hace en otras teorias clasicas de campos. En efecto,
en ellas tenemos un espacio-tiempo de Minkowski bien definido y lo que se busca es cudndo una
cierta magnitud tensorial no esté bien definida o se dispara a infinito en un cierto evento de dicho
espacio-tiempo. Sin embargo, aqui la situaciéon es completamente diferente: estamos estudiando la
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propia variedad y la estructura de la métrica que da lugar al espacio-tiempo. Si estos no estan
definidos, no podremos hablar de eventos, de tiempos ni lugares. Por ejemplo, en el caso de la
métrica de Schwarzschild, si s6lo podemos definir la variedad para r > 0, no podemos referirnos
al punto r = 0 como un lugar, pues no es parte de la solucién ya que las Ecuaciones de Einstein
no se verifican en ese punto. De esta manera, notemos que cuando hablamos de singularidades en
realidad nos estamos refiriendo a espacio-tiempos singulares, y es esta nocién la que pretendemos
caracterizar.

Ante esta idea de que las singularidades, de algin modo, no estan presentes en el espacio-tiempo,
uno de los primeros intentos para tratarlas consistié precisamente en buscar incluirlas en la variedad
definiéndolas como un borde de la misma o redefiniendo la topologia del espacio si fuera necesario
[17]. Esto puede parecer sencillo e incluso llevarse a cabo de forma exitosa para algunos ejemplos
concretos, sin embargo, al intentar generalizar esta nocién se ha llegado a severos problemas. No
abordaremos esta cuestion aqui, si bien merece la pena mencionarla para completar el comentario
precedente.

No pudiendo hacer lo anterior, nos encontramos con que queremos detectar la existencia de compor-
tamientos singulares del espacio-tiempo cuando estos no son ni siquiera parte del mismo. Siguiendo
el punto de vista expuesto por R. P. Geroch en [18], un primer punto de partida para orientar la
bisqueda es estudiar, como ya hemos hecho antes, los escalares de curvatura, que caracterizan la
variedad y cuyo valor no puede ser modificado bajo cambios de coordenadas. Se pueden construir
un gran numero de escalares de curvatura, por ejemplo: R, R, R*", RaﬁWRa'B*”‘; o escalares dados
por polinomios que incluyan derivadas covariantes del tensor de Riemann. El valor de estos esca-
lares depende del punto que estemos considerando. Asi, lo que nos gustaria es encontrar alguno
de estos escalares tendiendo a infinito conforme dicho punto se acercara a la singularidad que ha
sido eliminada de la variedad para poder identificarla. Sin embargo, esto es algo tautolégico, ya que
precisamente no sabemos identificar dicha situacién. Ademads, en una curva que se propaga hacia
el infinito, es posible que algtin escalar de curvatura también se dispare a infinito, y esta no es la
circunstancia que queremos catalogar como “singularidad”. Por otro lado, se pueden dar ejemplos
sencillos de variedades singulares que sin embargo tienen tensor de curvatura idénticamente nulo en
cada punto. Por ejemplo, si tomamos el espacio de Minkowski y eliminamos la regiéon dada por los
puntos con coordenada azimutal 0 < ¢ < ¢g, para posteriormente identificar cada punto con ¢ = 0
con el correspondiente con ¢ = ¢g, nos encontramos con que se puede definir bien la estructura
de la variedad con su métrica en los puntos que hemos identificado con r > 0. Sin embargo, no
ocurre lo mismo en el origen r = 0, que constituye una singularidad cénica de la variedad, donde
no se puede definir correctamente el espacio tangente. Y aun asi, como anticipabamos, el tensor
de Riemann es idénticamente nulo en cada punto, luego no consigue predecir este comportamiento
correctamente. Por otro lado, se pueden dar ejemplos en los que ocurre lo contrario a lo que acaba-
mos de exponer: se puede evitar el comportamiento singular sin hacer desaparecer las divergencias
[19], lo que termina de concluir que no hay una relacién necesaria entre ambos conceptos.

A pesar de esto ultimo, las situaciones investigadas en el parrafo anterior demostraran pronto
su utilidad. Volvamos sobre la cuestion de distinguir cudndo una curva se estd acercando a una
singularidad o se estd extendiendo hacia infinito. Una primera respuesta intuitiva para diferenciarlas
se podria basar en que la curva que se aproxima al infinito deberia tener longitud asimismo infinita
desde un cierto punto, mientas que la que se aproxima a la singularidad deberia tener longitud
finita. Ello se debe a que, segin nuestra idea intuitiva de singularidad como un “agujero” en el
espacio-tiempo, las curvas que se encaminen hacia dicho agujero se verdn cortadas. Sin embargo,
puesto que estamos trabajando con métricas indefinidas, la nocién de “distancia” no funciona como
estamos acostumbrados, y hay curvas que se extienden al infinito con longitud nula. No obstante, si
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conocemos un concepto que puede servirnos para este fin incluso con métricas indefinidas: el rango
del pardmetro afin de una geodésica.

5.2. Completitud de caminos para detectar singularidades

Definamos una semi-geodésica como una curva geodésica que consideramos a partir de un cierto
punto (al que denominamos punto final) y que se extiende lo més lejos posible en un sentido desde
dicho punto. Diremos que un espacio es geodésicamente completo cuando el pardmetro afin de cada
semi-geodésica recorre un rango no acotado de valores. Con estas definiciones, exploramos la posibi-
lidad de que podamos caracterizar un espacio-tiempo singular como aquel que no es geodésicamente
completo, pues sus geodésicas se encuentran con los espacios dejados por las singularidades.

Atendiendo a los diferentes tipos de geodésicas existentes, se podria distinguir entre espacios con
geodésicas completas de género tiempo, espacio o nulo. Si extraemos artificialmente un punto re-
gular de un espacio-tiempo no singular, los tres tipos de geodésicas se ven afectados pasando a ser
incompletas. De este modo, si en efecto queremos utilizar la no completitud geodésica para caracte-
rizar la presencia de singularidades, deberia cumplirse que estas tres maneras de ser geodésicamente
completo fueran equivalentes. Sin embargo, esto no se verifica, como demostré Geroch en el paper
que ya hemos mencionado [18]. Este construyé un espacio geodésicamente completo para geodésicas
de género luz y espacio, que sin embargo, no lo era para geodésicas de género tiempo. El proce-
dimiento seguido, ademas, era extrapolable para conseguir otros espacios parecidos que tuvieran
geodésicas incompletas de alguno de los géneros, manteniendo la completitud en los otros, y asi
encontro espacio-tiempos de los siguientes tipos:

1. completo para género tiempo, incompleto para género espacio y nulo;
2. completo para género espacio, incompleto para género tiempo y nulo;
3. completo para género nulo, incompleto para género espacio y tiempo;
4. completo para género tiempo y nulo, incompleto para género espacio;
5. completo para género espacio y nulo, incompleto para género tiempo.

Al margen de este fracaso, encontramos que la incompletitud geodésica de género tiempo y nulo da
lugar a fendmenos contradictorios con nuestra intuicion. Para el caso de geodésicas de género tiempo
se tiene una interpretacién fisica inmediata. Puesto que el parametro afin de dichas geodésicas se
asocia al tiempo que marcan los relojes de observadores o particulas con estas como trayectorias,
que estas finalicen para un valor finito del mismo significa que pasado un tiempo propio finito dichos
observadores o particulas cesan de existir. Por su parte, no se puede otorgar una interpretacién fisica
asi de sencilla al pardmetro afin de geodésicas nulas. Sin embargo, sabemos que estas curvas reflejan
las trayectorias de fotones en el espacio-tiempo, que también parecen acabar de forma abrupta. Estas
circunstancias patoldgicas parecen suficientemente contradictorias con nuestra intuicién fisica como
para que exista un amplio consenso en considerarlas como condicién suficiente para denominar a
un espacio-tiempo singular [16]. De hecho, existen una serie de teoremas debidos a Hawking y
Penrose [1][5] para caracterizar los espacios singulares cuya prueba se reduce a comprobar esta
caracteristica. Sin embargo, no se debe olvidar que puesto que no es una condicién necesaria, existen
muchos otros espacios cumpliendo ser geodésicamente completos para geodésicas de género luz y
tiempo, que aun asi, podrian ser considerados como singulares. Por ejemplo, en el mismo articulo
anteriormente mencionado de Geroch [18] se construye un espacio geodésicamente completo que
contiene una curva de género tiempo de aceleraciéon acotada y longitud finita. De esta manera,
un observador con una nave apropiada y una cantidad finita de combustible podria recorrer dicha
curva y desaparecer tras un intervalo finito de tiempo. Si hemos asumido que un espacio singular
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era aquel en que los observadores inerciales podian desaparecer tras intervalos finitos de tiempo,
parece razonable incluir también a los observadores en naves espaciales aceleradas.

Asi, en ultima instancia, lo que se hace para caracterizar los espacios singulares es generalizar el
concepto de parametro afin a cualquier tipo de curva diferenciable en la variedad, independiente-
mente de que sea o no geodésica, y exigir la completitud respecto a dicho parametro. Como ya
anunciabamos, aqui se omitira dicho procedimiento puesto que para analizar el espacio-tiempo de
Schwarzschild es suficiente quedarnos con la condicién necesaria de completitud geodésica de género
temporal. Este procedimiento se desarrolla en detalle en [1].

5.3. Extensiones maximales

Ante toda la discusién realizada anteriormente cabe la siguiente objeccion: podemos clasificar como
singular un espacio regular al cual se le han quitado algunas regiones de forma artificial. Esto, en
realidad, no nos permite concluir que hay una patologia intrinseca en la geometria de la variedad,
sino que simplemente que no la estamos considerando al completo. Asi, podemos resolver esta
cuestion facilmente incluyendo de nuevo dichas regiones. Para ahorrarnos esta cuestion, restringimos
la clasificacién de variedades singulares a los espacio-tiempos inextendibles, o dicho de otro modo
a las extensiones maximales de la geometria. Veamos qué significa esto con rigor, si bien ya nos lo
podemos imaginar por los procedimientos aqui seguidos.

Un espacio-tiempo dado por la variedad M y la métrica g,, se dice extendible si existen otro
espacio tiempo, definido por M y Gy Y una isometria ¢ (es decir, un difeomorfismo que preserva
la métrica) de manera que ¢ : M — M con el contenido estricto (M) C M. De modo anilogo,
diremos que es inextendible si no se dan las condiciones anteriores. En estas definiciones, al conectar
las métricas por isometrias se exige que estas sean formas definidas en la variedad de clase al menos
C? para poder tener los tensores de curvatura bien definidos. Sin embargo, hay generalizaciones
del concepto de extension que relajan esta condicién y simplemente buscan que el segundo espacio
tenga una métrica continua [20]. Al margen de esto, para detectar si un espacio es inextendible, en
el sentido que aqui se ha estipulado, se recurre precisamente a argumentos como los utilizados para
definir las singularidades, pues estos son en gran numero de ocasiones lo que impiden encontrar
una métrica extendiendo la primera. Si hay una singularidad de la geometria espacio-temporal, en
ningin caso podremos extender la métrica mas alld de la misma.

Centrandonos en el ejemplo que nos ocupa, si recordamos el diagrama espacio-temporal de las
coordenadas de Kruskal-Szekeres para cada espacio con 8 y ¢ constantes, se tenia que este abarcaba
la region entre las dos hipérbolas en que se desdoblaba la singularidad en r = 0 en coordenadas
de Schwarzschild. De esta manera, y puesto que las geodésicas nulas en coordenadas de Kruskal-
Szekeres eran simplemente lineas a 45° con los ejes, encontramos que en efecto este espacio es
geodésicamente incompleto para dicho género de geodésicas, pues todas empiezan o terminan en
una de dichas singularidades, y veiamos que estas se alcanzaban para valores finitos del parametro
afin. Ademads, podemos concluir que nos encontramos en la extensién maximal, pues no podemos
extender el parametro afin mas alla de dichas hipérbolas utilizando una isometria como hemos
indicado. La tnica forma que tenemos de extender las geodésicas es por medio de argumentos como
los que plantedbamos en la seccién 4.4. Sin embargo, como ya vefamos entonces, estos conllevan
serios problemas con respecto a su viabilidad, y en este caso se concluye que esta no es una opcién
posible. Este tipo de argumentos son los que nos sirven para concluir que la extensién maximal de
la geometria de Schwarzschild es, en efecto, la que nos da el elemento de linea de Kruskal-Szekeres,
y que en r = 0 encontramos una singularidad intrinseca al espacio-tiempo. Con esto, tenemos
identificados todos los elementos de la geometria, y concluye nuestro analisis.
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6. Conclusiones

Tras discutir todas las cuestiones precedentes, se pueden extraer una serie de conclusiones sobre lo
que se ha conseguido en este trabajo.

En primer lugar, hemos logrado entender la forma de la métrica de Schwarzschild y discernir entre la
situacién en que una métrica resulta singular por una mala eleccién del sistema de coordenadas que
describe la variedad frente a cuando verdaderamente indica la existencia de una patologia ineludible
en el espacio-tiempo. Numerosas soluciones exactas de las ecuaciones de Einstein tienen elementos
de linea singulares en ciertos sistemas de coordenadas. Es importante entender las herramientas
matematicas que se requieren para un tratamiento correcto de las mismas y para poder cambiar
las coordenadas a otras que nos permitan deshacernos de dichos comportamientos problematicos,
si es posible, como hemos hecho aqui.

En este caso, nos hemos centrado en la solucién de Schwarzschild, para la cual hemos conseguido
encontrar la extensiéon maximal. Ademas, en el estudio de la misma, se ha podido explicar en
profundidad conceptos fisicos de gran importancia relacionados con los agujeros negros. El primero
consiste en el horizonte de eventos, el cual, en efecto, hemos visto que supone un punto de no retorno
para particulas y fotones que lo atraviesen. Ademads hemos comprobado, que si bien un observador
inercial en el infinito espacial no consigue ver una particula atravesando dicho horizonte, el sistema
propio de la particula no impide en ningin caso que se atraviese dicho radio.

Por otro lado, gracias a la extensién maximal también hemos podido describir el puente de Einstein-
Rosen, que constituye una reparametrizacién concreta de la solucion de Schwarzschild. Este nos ha
permitido investigar la posibilidad de extender trayectorias de geodésicas modificando la topologia
e identificando las singularidades pasada y futura. Si bien este fenémeno no constituye un agujero
de gusano al uso, su hallazgo fue pionero en el estudio de estas estructuras, que también cobran
gran relevancia en el contexto de los agujeros negros.

Finalmente, hemos podido concluir que el otro comportamiento patologico de la métrica de Sch-
warzschild se debe a una singularidad intrinseca al espacio-tiempo. Hemos visto que la definicién
de singularidad puede ser escurridiza, y que, aunque hay situaciones que sirven para apuntar a la
existencia de este fendmeno, como los escalares de curvatura que tienden a infinito, en general no
suelen ser criterios concluyentes. Sin embargo, si hemos conseguido llegar a al menos una condiciéon
necesaria para la existencia de singularidades: el criterio de incompletitud geodésica que veniamos
observando desde las primeras secciones. Para ello, hemos justificado por qué esta situacion si es lo
suficientemente contradictoria con nuestra intuicién fisica como para que se pueda considerar como
tal.

En definitiva, en este trabajo se ha conseguido dar una explicacién de los conceptos fundamentales
relacionados con las fisica de los agujeros negros a través de la solucion de Schwarzschild. Se sientan
de este modo las bases en las intuiciones fisicas y herramientas matematicas que se pueden emplear
para el estudio de otros modelos mas complicados y con caracteristicas que aqui se han obviado:
por ejemplo, rotacién o carga electromagnética.
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