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Resumen

La monodromía estudia cómo cambian ciertos objetos matemáticos cuando
“se mueven” en torno a una singularidad. En este trabajo, estaremos in-
teresados en estudiar la monodromía en el caso particular de singularidades
aisladas de hipersuperficies. Sea f : (Cn+1, 0) → (C, 0) el germen de una
función analítica con un punto crítico aislado en el origen 0 ∈ Cn+1.

En el capítulo 1 se estudia la teoría básica relacionada con las singularidades
aisladas de hipersuperficies. Revisamos el conocido Teorema de la fibración
de Milnor. Este establece que para todo ρ > 0 suficientemente pequeño
existe un ε > 0 tales que la restricción

f |f−1(D∗ε )∩Bρ : f−1(D∗ε ) ∩ Bρ → D∗ε ,

es localmente trivial, donde Dε es el disco cerrado de radio ε > 0 centrado en
0 ∈ C y Bρ la bola cerrada de radio ρ > 0 centrada en el origen 0 ∈ Cn+1. La
fibra de esta fibración se denomina fibra de Milnor. Tras esto, se estudia una
familia de perturbaciones concretas de la función f llamada morsificación.
A partir de esta, podremos demostrar que la fibra de Milnor tiene el tipo
de homotopía de un bouquet de esferas de dimensión real n. Terminamos
el capítulo demostrando que el número de esferas que aparecen en dicho
bouquet es precisamente el número de Milnor de la singularidad.

En el capítulo 2 comenzamos el estudio de la monodromía de la singularidad
propiamente dicha. En la primera sección definiremos los operadores de mon-
odromía geométrica y algebraica y el operador de variación. En la segunda
sección aplicamos estos conceptos a un ejemplo de particular interés: el de la
singularidad de Morse. Usaremos los resultados ahí obtenidos en la tercera
sección para estudiar más a fondo la monodromía de una singularidad ais-
lada de hipersuperficie general utilizando una morsificación del germen que
la define. Concluimos el capítulo introduciendo los ciclos evanescentes y la
matriz de intersección de la singularidad.

En el capítulo 3 estudiamos lo anterior aplicado a un ejemplo concreto de
relevancia en el campo de la teoría de singularidades: la suma directa de
singularidades.
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En el capítulo 4 utilizaremos la teoría de conexiones definidas sobre fibrados
para estudiar la monodromía algebraica. En la primera sección del capítulo
intoducimos el fibrado de cohomología, un fibrado vectorial complejo que se
puede construir a partir de cualquier fibrado diferenciable. En particular, lo
podemos obtener para la fibración de Milnor. En la segunda sección intro-
ducimos la teoría de conexiones definidas sobre fibrados, y la utilizamos para
reconocer una conexión particular en el fibrado de cohomología. Esta será
una conexión lineal y localmente plana. Su holonomía nos dará precisamente
la monodromía algebraica de la singularidad. Esta holonomía se concreta en
las secciones planas de la conexión. Este tipo de secciones se caracterizan en
la sección cuarta del capítulo por medio de las derivadas covariantes. Final-
mente, aplicamos todo lo anterior al caso de la fibración de Milnor. El hecho
de que la conexión sea localmente plana y que estemos trabajando con un
fibrado complejo sobre una variedad compleja nos permitirá dotar al fibrado
de cohomología de una estructura holomorfa.

En el capítulo 5 se justifica la aparición de formas holomorfas en el estudio
clásico de la monodromía de singularidades. El objetivo del capítulo será
encontrar un isomorfismo entre la cohomología del complejo de formas holo-
morfas definidas en la fibra de Milnor y la cohomología singular de dicha
fibra. Este isomorfismo se inspira en el que se tiene por el Teorema de de
Rham para formas diferenciables sobre variedades diferenciables reales. Para
lograrlo se utiliza la teoría de cohomología de haces sobre espacios complejos.
De esta manera, este capítulo es una exposición de los contenidos relaciona-
dos con esta teoría necesarios para encontrar el isomorfismo que nos interesa:
haces constantes y cohomología simplicial, el teorema abstracto de de Rham,
haces coherentes, variedades Stein y los teoremas de Cartan A y B. El iso-
morfismo obtenido estará dado por las integrales de las formas holomorfas
sobre cadenas diferenciables en la fibra de Milnor.

Motivados por este resultado, en el capítulo 6 estudiamos este tipo de in-
tegrales. Demostraremos que definen funciones holomorfas multi-evaluadas
definidas en el disco punteado Dε \ {0}, base de la fibración de Milnor. Es
más: veremos que en el origen 0 ∈ C admiten un desarrollo en serie con unas
determinadas propiedades, relacionadas con la monodromía algebraica. Con
esto volvemos al objeto de interés del trabajo y concluimos la exposión.
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Abstract

Roughly speaking, the monodromy is the study of how some mathematical
objects change when they “go round” a singularity. In this work, we will be
interested in studying this situation for isolated hypersurface singularities.
Let f : (Cn+1, 0) → (C, 0) be the germ of an analytic function with an
isolated critical point at the origin 0 ∈ Cn+1.

In Chapter 1 we study the basic theory related to isolated hypersurface sin-
gularities. We review the famous Milnor’s Fibration Theorem, which states
that for every ρ > 0 sufficiently small there exists some ε > 0 such that the
restriction

f |f−1(D∗ε )∩Bρ : f−1(D∗ε ) ∩ Bρ → Dε,

is a smooth fibre bundle, where Dε is the closed disk of radius ε > 0 centred at
0 ∈ C and Bρ the closed ball of radius ρ > 0 centred in 0 ∈ Cn+1. The fibre of
this fibration is called Milnor fibre. Afterwards, we study a particular family
of deformations of the previous germ, called the morsification the germ. From
this family we will be able to prove that the fibres from the previous bundle
have to homotopy type of a bouquet of spheres of real dimension n. We end
this chapter showing that the number of spheres appearing in that bouquet
is precisely the Milnor number of the singularity.

In chapter 2 we begin to properly study the monodromy around the singu-
larity defined by f . In the first section, we explicitly construct the geometric
and algebraic monodromy operators and the variation operator of an isolated
hypersurface singularity. In the second section we apply these concepts to a
very important example: the Morse singularity. This will be used in section
3 to study the monodromy of a general isolated hypersurface singularity from
a morsification of the germ defining the singularity. We end the chapter by
defining the vanishing cycles and the Intersection Matrix of the singularity.

In chapter 3 we introduce an important example in singularity theory: the
direct sum of singularities. We study the monodromy and variation operators
applied to this case.

In chapter 4 we use the theory of connections on bundles to study the alge-
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braic monodromy. In the first section we define the cohomology bundle, a
complex vector bundle associated to any smooth fibre bundle. In particular,
it can be constructed for the Milnor Fibration. Afterwards, we review the
theory of connections on bundles and use it to recognise a particular connec-
tion on the cohomology bundle. This connection will turn out to be linear
and locally flat. Its holonomy will give us the algebraic monodromy of the
singularity. This holonomy can be realised by the horizontal sections. We
characterise those in the third section of the chapter with covariant deriva-
tives. We end the chapter applying all the previous contents to isolated
hypersurface singularities. From the locally flatness of the connection and
since we are working with a complex vector bundle over a complex manifold,
we will be able to define a holomorphic structure for the cohomology bundle
and the connection of isolated hypersurface singularities.

In chapter 5 we justify the appearance of forms in the classical study of the
monodromy singularities. The objective there will be to find an isomorphism
between the cohomology obtained from the complex of holomorphic forms
over the Milnor fibres and its singular cohomology with coefficients in C.
This isomorphism will be based in the de Rham theorem known for differ-
ential forms over real manifolds. To achieve this goal, we need to work with
cohomology of sheaves over complex spaces. Therefore, this chapter is an
exposition the contents related to this theory which are necessary to obtain
the desired isomorphism: constant sheaves and simplicial cohomology, the
abstract de Rham theorem, coherent sheaves, Stein manifolds and Cartan’s
theorems A and B. The isomorphism of our interest will be defined by the
integral of holomorphic forms over smooth chains on the complex manifold.

Motivated by this last result, in chapter 6 we study those kind of integrals.
We will show that they define multi-valuate holomorphic functions defined
in the punctured target disk Dε \ {0} of the Milnor’s Fibration. What is
more: we will prove that in the origin 0 ∈ C they admit a series expansion
with certain properties, closely related to the algebraic monodromy.
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Chapter 1

Isolated hypersurface
singularities

We begin this work with an introductory chapter in which we will state some
of the fundamental definitions and results that we will need afterwards, and
fix the notation that we will be using in the following chapters. Part of the
theory that here will be explained was covered in the final degree thesis that
I developed last year, also supervised by María Pe Pereira, following the
classical references on the topic by Milnor [1] and Arnold [3]. In that work
you shall find all the details that we will omit here.

We will study here many different properties and geometric information
about a germ f : (Cn+1, 0) → (C, 0) of an analytic function with a criti-
cal point at the origin.

1.1 Milnor’s Fibration

We want to study the local properties of isolated singularities of complex
hypersurfaces, which are described locally as the zero level set of an analytic
function. To simplify our notations, we will suppose that the singular point
which we are studying is at the origin 0 ∈ Cn+1. We begin introducing the
objects that we will use to describe that situation. We suppose that the
reader is familiar with the notion of germ of a space and germ of a function.
If that is not the case, a nice introduction to this theory shall be found in
the third chapter of [2].

Let f : (Cn+1, 0) → (C, 0) be a germ of analytic function at the origin
0 ∈ Cn+1 which verifies f(0) = 0. We can consider the germ of the set
X := f−1(0) at the origin 0 ∈ Cn+1, which we denote by (X, 0). This
defines a germ of hypersurface at the origin. We will always consider that
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the germ f : (Cn+1, 0)→ (C, 0), from which we parted, is a generator of the
ideal I(X, 0) ⊂ On+1.

The Implicit Function Theorem tells us that the level sets f−1(ε) are mani-
folds when ε is not a critical value of f . Moreover, if, for example ε = 0 is a
critical value and its associated critical point is isolated and located at the
origin, the level set f−1(0) is also a manifold away from the origin.

Additionally, the Jacobian Criterion allows us to state the following.

Theorem 1.1.1. Let (X, 0) be the germ of an analytic hypersurface and
f : (Cn+1, 0) → (C, 0) be the germ of an analytic function generating the
ideal I(X, 0). Then, the following conditions are equivalent.

1. The germ of hypersurface (X, 0) is not smooth.

2. The analytic function f ∈ On+1 has a critical point at the origin.

Furthermore, saying that (X, 0) = (f−1(0), 0) has an isolated singularity
is equivalent to saying that f has an isolated critical point at the origin
0 ∈ Cn+1.

In 1968, John Milnor proved several important facts concerning singularities
in complex hypersurfaces. Before stating them, we make some observations
about the representatives of the germs we will be taking.

1.1.1 Transversality and good representatives of the germ

Let f : (Cn+1, 0) → (C, 0) be an analytic function with an isolated critical
point at the origin. The following results were proved by Milnor in [1], and
were covered in the second chapter of my final degree thesis.

Lemma 1.1.1. There exists ρ > 0 sufficiently small such that for every
0 < r ≤ ρ, the sphere Sr of radius r centred at the origin 0 ∈ Cn+1 intersects
transversely the level set f−1(0) = V (f).

With the previous lemma in mind, Milnor proved the Conic Structure
Theorem, which states that for that ρ > 0 sufficiently small, the inter-
section of the closed ball centred at the origin with radius ρ > 0 with the
hypersurface: Bρ∩V (f), is homeomorphic to the cone of the space Sρ∩V (f)
over the origin, that is

C(Sρ ∩ V (f)) := {tx : t ∈ [0, 1], x ∈ Sρ ∩ V (f)}.

The value of ρ > 0 verifying lemma 1.1.1 is commonly known as Milnor
radius, and the closed ball (Bρ) and sphere (Sρ) of that radius are called
Milnor ball and Milnor sphere. The intersection Link(f, 0) := Sρ ∩ V (f)
is called the link of the singularity. Its topology does not depend on the
Milnor radius.
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In particular, from the Conic Structure theorem we get that the representa-
tive of X in a Milnor ball is contractible.

Since being transverse is an open condition, we also have the following
lemma.

Lemma 1.1.2. For sufficiently small ε > 0 the target disk Dε only contains
one critical value of f , namely, the 0 ∈ C, and the level sets f−1(z) for
z ∈ Dε := {z ∈ C : |z| ≤ ε} also intersect transversely the Milnor sphere Sρ.

With all these results in mind, we fix the following notations for the remain-
ing of this text:

• D := Dε and D∗ := Dε \ {0},

• X := Bρ ∩ f−1(D),

• for z ∈ D the fibre Xz := f−1(z) ∩ Bρ,

• X∗ := X \X0.

In this work, unless otherwise stated, when we take a representative of the
germ defining the hypersurface, we will consider it defined between the fol-
lowing spaces

f : X → D.

We will call this a good representative of the germ.

1.1.2 Milnor’s Fibration

Now, we give an overview of one of the most important theorems introduced
by Milnor in [1]: his famous Milnor’s Fibration Theorem. The theory of
this section was covered in the third chapter of my final degree thesis. We
will state here three different versions of the Milnor’s Fibration, being the
third the one we will use most in this work. These theorems can be proved
using the Ehresmann theorem, which we include next since we will refer to
it in several occasions.

Theorem 1.1.2 (Ehresmann’s Theorem). LetM and N be two smooth man-
ifolds without boundary and let f : M → N be a smooth surjective map which
is a proper map and a submersion. Then, f is locally trivial.

Moreover, if ∂M 6= ∅ and additionally we have that f |∂M is a submersion,
then we can still conclude that f is locally trivial.

We begin with the version which Milnor introduced first.

Theorem 1.1.3 (Milnor’s Fibration on the Milnor sphere). Let f :
(Cn+1, 0) → (C, 0) be a germ of analytic function with an isolated critical
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point at the origin, and ρ > 0 its Milnor radius. Then, the argument function

φ :=
f

|f |
: Sρ \ Link(f, 0)→ S1

describes a smooth fibre bundle.

This means that for every eiθ ∈ S1, there exists a neighbourhood U ⊂ S1 of
eiθ, a smooth manifold F and a diffeomorphism ϕ : φ−1(U) → U × F such
that the following diagram is commutative

φ−1(U) U × F

U

φ

ϕ

π1

where π1 : U × F → U is the first projection.

There is another version of this theorem, which describes a smooth fibre
bundle equivalent to the previous one. It relies heavily on the transversality
conditions of the previous section.

Theorem 1.1.4 (Milnor’s Fibration on the Milnor tube). Let f :
(Cn+1, 0) → (C, 0) be a germ of analytic function with an isolated critical
point at the origin, ρ > 0 its Milnor radius and ε > 0 in the conditions of
lemma 1.1.2. Then, f is locally trivial when restricted to f−1(∂Dε) ∩ Bρ.
That is, we have the following smooth fibre bundle

f |f−1(∂Dε)∩Bρ : f−1(∂Dε) ∩ Bρ → ∂Dε.

The space f−1(∂Dε) ∩ Bρ is usually referred to as the Milnor tube.

A consequence of the previous fibrations being equivalent is that their fibres
are diffeomorphic. That is, we have that

φ−1(eiθ) ∼= f−1(δ) ∩ B̊ρ

for every eiθ ∈ S1 and δ ∈ ∂Dε. The first term is a fibre of Milnor’s Fibration
on the sphere and the second term, an open fibre on the tube (observe that we
intersected with the open ball). Both of them, since they are diffeomorphic,
are referred to as Milnor fibres.

Finally, we can consider a third fibration which we will use a lot in this work.
This fibration is obtained considering all the possible tubes f−1(∂Dr) ∩ Bρ,
for 0 < r ≤ ε, which are in the conditions of transversality of lemma 1.1.2 as
well.

Theorem 1.1.5 (Milnor’s Fibration on the filled tube). Consider f :
(Cn+1, 0)→ (C, 0) a germ of analytic function with an isolated critical point
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at the origin, ρ > 0 its Milnor radius and ε > 0 in the conditions of lemma
1.1.2. Then, f is locally trivial when restricted to f−1(D∗ε )∩Bρ. That is, the
restriction of a good representative of the germ

π := f |X∗ : X∗ → D∗

is locally trivial.

Its fibres are again the Milnor fibres.

1.2 Morsifications of isolated singularities

Now, let us study non-degenerate singularities, which give rise to Morse
functions. We will see that, in this case, we know the diffeomorphic type of
the fibres of the Milnor’s fibration. After that, we will see how to deform
a general analytic function with an isolated critical point into a family of
Morse functions with some other useful characteristics. This theory is part
of the last chapter of the final degree thesis aforementioned.

Let f : U → C be an analytic function where U ⊂ Cn. We recall that the
Hessian of f in x0 ∈ U is the matrix with the second partial derivatives of
that function

Hf (x0) :=

(
∂2f

∂xi∂xj
(x0)

)
, 1 ≤ i, j ≤ n.

Definition 1.2.1. We say that f has a non-degenerate critical point in
x0 ∈ U when it has a critical point in x0 such thatHf (x0) is a non-degenerate
matrix. These kind of critical points are also calledMorse points orMorse
singularities.

Definition 1.2.2. When we have a function which only has non-degenerate
critical points, we call it a Morse function.

A very important feature of this special kind of functions is the following.

Lemma 1.2.1 (Morse’s lemma). Let f : U → C be an analytic function with
U ⊂ Cn and having a non-degenerate critical point at x0 ∈ U . Then there
exists a local system of coordinates (x1, ..., xn) defined in a neighbourhood
V ⊂ U of x0 such that the function f has the following expresion in V :

f(x1, ..., xn) = f(x0) +

n∑
i=1

x2
j .

In the framework here presented, we will say that the germ of analytic func-
tion f : (Cn+1, 0) → (C, 0) defines a Morse singularity when it has a
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representative which is Morse, that is, which has a non-degenerate critical
point at the origin. We can assume that this representative is a good repre-
sentative f : X → D. In this situation, we have the diffeomorphic type of
the Milnor fibres completely determined due to the following lemma.

Lemma 1.2.2. Let f : (Cn+1, 0)→ (C, 0) be the germ of an analytic function
with an isolated Morse singularity at the origin, Bρ its Milnor ball and Dε
in the conditions of lemma 1.1.2. Then Xz := f−1(z) ∩ Bρ for z ∈ D∗ε is
diffeomorphic to the disk subbundle of the tangent bundle of the standard
n-dimensional sphere Sn.

Proof. Let us first make some assumptions that will simplify the problem.
First, we know by the Morse Lemma that in a neighbourhood of the origin,
which is a non-degenerate critical point, we can take a system of coordinates
such that

f(x1, ..., xn+1) =
n+1∑
i=1

x2
j .

After a linear change of coordinates, we can assume that ε = 1. Since the
Milnor fibres are all diffeomorphic, we only need to prove the lemma for the
fibre X1, for instance.

If we consider the real and imaginary part of each coordinate xj = uj + ivj ,
where uj and vj are real, we have the following equations describing X1:

n+1∑
j=1

u2
j −

n+1∑
j=1

v2
j = 1,

n+1∑
j=1

ujvj = 0,

n+1∑
j=1

u2
j +

n+1∑
j=1

v2
j ≤ ρ2.

Taking the transformation

ũj =
uj√∑
u2
j

, ṽj = vj

we get the equations

n+1∑
j=1

ũj = 1,

n+1∑
j=1

ũj ṽj = 0,

n+1∑
j=1

ṽj ≤
ρ2 − 1

2

which are the ones describing a disk subbundle of the tangent bundle of the
standard n-dimensional sphere in R2n−1 defined by

Sn = {(x1, ..., xn+1) :

n+1∑
j=1

u2
j = 1, vj = 0}

as we wanted.
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From the previous lemma we can see that we have a great deal of information
about the particular case of Morse singularities but, quite obviously, not
every germ f : (Cn+1, 0) → (C, 0) which defines a singularity is Morse.
However, we will be able to find a perturbation of f : X → D a good
representative of the germ, sufficiently close to it with some very convenient
properties, among them, being Morse.

Theorem 1.2.1. Let f : (Cn+1, 0) → (C, 0) be a germ with an isolated
critical point at the origin and Bρ its Milnor ball. We can construct a family

{fλ : λ ∈ C, |λ| ≤ λ0}

of perturbations fλ : Xλ → D, where Xλ := f−1
λ (D) ∩ Bρ, verifying that:

• f0 = f ,

• the fibres f−1
λ (s) are transverse to the sphere Sρ for every |λ| ≤ λ0 and

s ∈ D,

• fλ only has a finite number of critical points, all non-degenerate and
lying in D̊,

• and that the critical values associated to those critical points are all
different from each other.

This is what we will call a morsification of the singularity. The number of
critical values that we obtain under a perturbation of this kind is always the
same, and equals the Milnor number of the singularity µ(f). We will give
an idea of why this happens in the following two sections of this chapter.

Lastly, if we fix some 0 < |λ| ≤ λ0, maybe taking a smaller λ0, we can ensure
that the Milnor fibres of the function f

Xz := f−1(z) ∩ Bρ, for 0 < |z| ≤ ε.

are diffeomorphic to the fibres of the function from the morsification

Xz,λ := f−1
λ (z) ∩ Bρ for 0 < |z| ≤ ε.

1.3 Topology of the fibre of an isolated singularity

We finished the final degree thesis calculating the homotopy type of the
Milnor fibres in the case of isolated singularities, following the approach
of Arnold in [3]. We devote this section to stating these last results. Let
f : (Cn+1, 0) → (C, 0) be the germ of an analytic function with an isolated
critical point at the origin.

Note that we already know the homotopy type of the Milnor fibres for isolated
Morse singularities. Thanks to lemma 1.2.2, we can assure that they have
the homotopy type of a sphere of real dimension n.
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Let us go back to the general case and recall the notations of section 1.1.1.
We know that the fibres

Xz := f−1(z) ∩ Bρ, for 0 < |z| ≤ ε.

are compact manifolds of complex dimension n with boundary ∂Xz = Xz ∩
Sρ. Moreover, since we have the structure of fibre bundle described in theo-
rem 1.1.5, we can assure that they are all diffeomorphic.

In theorem 6.5 of [1] Milnor proved that the manifold Xz has the homotopy
type of a bouquet of spheres of real dimension n, and then in the following
chapter he showed that the number of spheres of that bouquet coincides with
the Milnor number of the singularity. In [3], Arnold, following Brieskorn
[17], gave another approach to this using morsifications and the fact that
we know the homotopy type of Morse singularities. Next, we explain briefly
this second method, since it entails a construction which has some interest
for our purposes. The situation which we describe next is pictured in the
figure 1.1.

1.3.1 Construction of a model with the homotopy type of a
bouquet of spheres in the Milnor fibre

Consider f : (Cn+1, 0)→ (C, 0) a germ of analytic function with an isolated
singularity at the origin, and let Bρ be its Milnor ball and Dε the disk in the
conditions of lemma 1.1.2. We take a morsification {fλ : λ ∈ C, |λ| ≤ λ0} of
that germ, that is, a deformation of f in the conditions of theorem 1.2.1. Let
us fix some |λ| ≤ λ0 and its respective function from the morsification fλ.
We will construct a model with the homotopy type of the desired bouquet
of spheres which is contained in a fibre Xs,λ of fλ.

We know that fλ has a finite number of critical points pi, for i = 1, ..., N ,
which are all non-degenerate and whose critical values zi = fλ(pi) are pair-
wise distinct: zi 6= zj for i 6= j. Let Bρi ⊂ Bρ be the Milnor ball of the critical
point pi and Dεi ⊂ Dε be the disks in the conditions of lemma 1.1.2 for those
points as well. Since the critical points pi are non-degenerate, that is, Morse
singularities, we know that the space f−1

λ (si) ∩ Bρi for some si ∈ ∂Dεi has
the homotopy type of a n-dimensional sphere.

Now, we take z0 ∈ ∂Dε and a set of disjoint paths ui : I → D joining s with
the critical values zi, intersecting only once the disks Dεi in a set of points
si ∈ ∂Dεi , and not passing through any other of the critical values. We call
αi to the first part of those paths, that is, the one joining z0 with the points
si. We define

Γ :=

N⋃
i=1

αi.

8



Figure 1.1: Model with the homotopy of a bouquet of n-dimensional spheres
in the Milnor fibre of a morsification
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We fix some q ∈ Xz0,λ and lift the paths αi to some α̃i verifying αi = fλ ◦ α̃i
and which all start in q and end in some point over the fibre f−1

λ (si) ∩ Bρi .

Now, let us build spaces Si ⊂ f−1
λ (si) ∩ Bρi , for i = 1, ..., N , with the homo-

topy type of a n-dimensional sphere. By the Morse Lemma, we know that
in a neighbourhood of the critical point pi there is a system of coordinates
(x1, ..., xn+1) such that the function fλ can be written as

fλ(x1, ..., xn+1) = zi +
n+1∑
i=1

x2
i .

Thus, for values of the parameter t > 0 of the path ui sufficiently close to
zero we can fix in the level manifold Xui(t),λ the following sphere

S(t) :=
√
ui(t)− zi Sn

where

Sn := {(x1, ..., xn+1) :
n+1∑
i=1

x2
i = 1; Im(xi) = 0, ∀i = 1, ..., n+ 1}

is the standard unit n-dimensional sphere. Taking the value of the parameter
τi ∈ I corresponding to the point si = ui(τi), we obtain the sphere Si = S(τi)
we where looking for.

We then define

Y :=

N⋃
i=1

(α̃i ∪ Si)

which has, by definition, the homotopy type of a bouquet of N spheres of
real dimension n.

The space Y is contained in f−1
λ (Γ). We know that fλ is locally trivial over

Γ, and since Γ is a contractible set, we can conclude that fλ is trivial over
that space. Therefore, we have that the following spaces are diffeomorphic

f−1
λ (Γ) ∼= Γ×Xs,λ.

Now, using again that Γ is contractible, we conclude that f−1
λ (Γ) has the

same homotopy type than Xs,λ.

In conclusion, we have described a space Y contained in a space with the
homotopy type of the fibre Xs,λ. One can prove, using homological argu-
ments, that the previous inclusion is actually an homotopic equivalence (see
theorem 2.2 in [3]). Thus, the fibre Xs,λ has the homotopy type of a bouquet
of N spheres of real dimension n. Since we can choose the morsification so
the fibres Xs,λ are diffeomorphic to the Milnor fibres of f , we arrive to the
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conclusion that we wanted: the fibre Xz has also the homotopy type of a
bouquet of N spheres of dimension n. The homology groups of Xz are thus

Hk(Xz) = 0, for k 6= n; Hn(Xz) = ZN ,

that is, the free abelian group with N generators.

Lastly, we realise that the number of spheres appearing in the bouquet is
determined by the number of different Morse points that appear in a function
from the morsification, which we denoted by N . Since the homotopy type
of the fibre Xz only depends on the function f : (Cn+1, 0) → (C, 0), we
conclude that this number of Morse points only depends on f as well, that
is, N = N(f). In the following section we will show that this number
coincides with the Milnor number of the singularity, as Milnor had already
proved.

1.4 Milnor number of isolated singularities

The objective here is proving that the number of Morse points appearing
in the construction of the previous section equals the Milnor number of
the fuction defining the singularity. We begin by defining it and giving a
characterisation of isolated singularities in terms of the jacobian ideal and
this Milnor number. Afterwards, we will introduce a key lemma for the
purpose of the section: the Principle of Conservation of Number (applied to
the Milnor number), and use it to prove it what we want to.

Let f : (Cn+1, p)→ (C, 0) be a germ of analytic function and

J(f)p =

((
∂f

∂z1

)
p

, ...,

(
∂f

∂zn+1

)
p

)
On+1,p

the jacobian ideal of f at p.

Definition 1.4.1. TheMilnor number of f at p is defined as the following
dimension

µ(f, p) := dimC
On+1,p

J(f)p
.

The easiest example of the Milnor number of a point is that of a smooth
point. In that case, the previous quotient is empty and we have that µ = 0.
For aMorse singularity, we can also easily compute the Milnor number. If
we have f : (Cn+1, 0)→ (C, 0) with a non-degenerate isolated critical point
at the origin, we know that there exists a neighbourhood U of the origin and
a system of coordinates (x1, ..., xn+1) such that the function f is of the form

f(x1, ..., xn+1) = x2
1 + ...+ x2

n+1.
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Therefore, we have that J(f) = (x1, ..., xn+1)On+1 = mn+1, and then,
µ(f, 0) = 1.

Now, let mn+1 ⊂ On+1 be the maximal ideal of the ring of convergent series
at the origin. Then, a necessary condition for f ∈ On+1 to define a singularity
at the origin is verifying f ∈ m2

n+1. Moreover, the following lemma, which
we will use in the future, can be proved.

Lemma 1.4.1. Let f ∈ m2
n+1. The following assertions are equivalent:

1. f has an isolated critical point at the origin,

2.
√
J(f) = mn+1.

We also have another characterisation of isolated singularities, concerning
its Milnor number, for which we will include the proof.

Lemma 1.4.2. Let f ∈ m2
n+1. The following assertions are equivalent:

1. f has an isolated critical point at the origin,

2. µ(f, 0) < +∞.

Proof. 1.⇒ 2.

If f has an isolated critical point at the origin, from lemma 1.4.1 and since
On+1 is noetherian, we know that there exists some k ≥ 0 such that mk

n+1 ⊂
J(f). Therefore we have a surjective homomorphism of C-modules

On+1

mk
n+1

→ On+1

J(f)

which implies that the dimensions of those vector spaces verify

dimC

(
On+1

J(f)

)
≤ dimC

(
On+1

mk
n+1

)
.

Since the space from the right is the vector space of polynomials of degree
less than k, we get that its dimension as finite, and thus, that

µ(f, 0) = dimC

(
On+1

J(f)

)
< +∞

as we wanted.

2.⇒ 1. We can consider the following chain of inclusions of ideals of On+1:

J(f) ⊂ ... ⊂ mk
n+1 + J(f) ⊂ ... ⊂ m2

n+1 + J(f) ⊂ mn+1 + J(f).

Since
dimC

(
On+1

J(f)

)
< +∞
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and in each of the previous inclusions we have

dimC

(
On+1

J(f) + mk+1
n+1

)
≥ dimC

(
On+1

J(f) + mk
n+1

)
we cannot have the strict inequality in an infinite number of inclusions.
Therefore, the previous chain stabilises, that is, for some k ≥ 0 we have that

ml
n+1 + J(f) = ml+1

n+1 + J(f)

for every l ≥ k.

This fact implies the following equality

J(f) + mn+1(J(f) + mk
n+1) = J(f) + mk+1

n+1 = J(f) + mk
n+1.

By Nakayama’s Lemma we conclude that

J(f) = J(f) + mk
n+1

that is,
mk
n+1 ⊂ J(f) =⇒

√
J(f) = mn+1

and again using the previous characterisation, we conclude that f has an
isolated critical point at the origin.

Now, we introduce an application of a very important theorem: the Principle
of Conservation of Number. The motivation for that theorem is that some
invariants related to singularities are characterised by the dimension of some
vectorial spaces. That is exactly what happens with the Milnor number.
The Principle of Conservation says that, under some reasonable hypothesis
of coherence, a notion which will be introduce in the chapters to come, those
dimensions are preserved under deformations of the germ f . We state an
application of that theorem to the situation we are interested in.

Theorem 1.4.1. Let f : (Cn+1, 0)→ (C, 0) be the germ of an analytic func-
tion with an isolated critical point, and µ(f, 0) its Milnor number. Consider
a deformation of f , that is

F : (Cn+1 × C, (0, 0))→ (C, 0), F (x1, ..., xn, 0) = f(x1, ..., xn).

Then, for all sufficiently small open neighbourhoods U of 0 ∈ Cn+1 there
exists an open neighbourhood V of 0 ∈ C such that for all s ∈ V

µ(f, 0) =
∑

p∈U×{s}

µ(fs, p)

where fs(x) := F (x, s).
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The proof for this theorem might be checked on section 6.4 of [2]. With this
fact in mind, we can now state and prove the fundamental theorem of the
section.

Theorem 1.4.2. Let f : (Cn+1, 0) → (C, 0) be the germ of an analytic
function with an isolated critical point at the origin. Let N(f) be the number
of Morse points which appear in a morsification of f , as discussed in the
previous section. Then we have

µ(f, 0) = N(f).

Proof. With the Principle of Conservation of the number, the work is almost
done. We take a morsification of f , that is, a deformation in the conditions
of theorem 1.2.1. To that deformation, we apply the previous theorem 1.4.1.
Then, for λ small enough we have

µ(f, 0) =
∑
pi∈Xλ

µ(fλ, pi).

Since the only critical points of fλ are non-degenerate, we have that

µ(fλ, pi) = 1

for every critical point pi of fλ. Therefore, we get what we wanted

µ(f, 0) = N(f).
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Chapter 2

Picard-Lefschetz Theory

In this chapter we will introduce the basic concepts of the theory of Picard-
Lefschetz, which is used to investigate the topology around critical points of
holomorphic functions. We begin by defining the monodromy and variation
operators on a singularity. Then we study a very important example of
those: the monodromy and variation operators of the Morse singularity.
Afterwards, we will use the morsification which we defined in the previous
chapter to give an expression of those operators for an arbitrary isolated
singularity in terms of the monodromy and variation operators of Morse
singularities. We will end finding basis for the homology groups in which
those operators act to complete their description.

The main reference for this exposition is the second chapter of [3]

2.1 The monodromy and variation operators

Let f : (Cn+1, 0) → (C, 0) be the germ of an analytic function with an iso-
lated critical point at the origin and Bρ its Milnor ball. Recall the notations
1.1.1.

We know that the function

f∗ := f |X∗ : X∗ → D∗

is locally trivial.

By the lemma 1.1.1, we also have that the restriction f |Sρ∩X : Sρ ∩X → D
is a submersion. Therefore, by the Ehresmann theorem (theorem 1.1.2) we
conclude that the function

f |Sρ∩X : Sρ ∩X → D

is locally trivial, and since D is contractible, that it is actually trivial.
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For z ∈ D∗, the space Xz := f−1(z)∩Bρ is a complex manifold with complex
dimension n and boundary

∂Xz = Sρ ∩Xz.

Furthermore, we have also seen that it has the homotopy type of a bouquet
µ of spheres of real dimension n.

Let us construct the monodromy. We fix fix z0 ∈ ∂D a non-critical value
and the loop in D∗ based at z0 defined by

γ(t) = z0 · exp{2πit}, t ∈ [0, 1];

which goes round the critical value once anticlockwise. Since we know that
f is locally trivial on X∗ and trivial on Sρ∩X we can construct a continuous
family of mappings

{Γt : Xz0 → X, t ∈ I}

in the following way. We take a set of open sets {Ui : i = 1, ..., N} covering
the image of loop, which we call in the same way γ, and which are trivial-
ization domains of the fibration f∗. We consider the field of tangent vectors
of γ, and using the previous trivializations, we lift those vectors locally to
X. Observe that, since f |Sρ∩X is trivial, we can take the lift preserving this
product structure in the boundary. We use a partition of unity subordinated
to the covering of the path to glue the local lifts in order to obtain a smooth
field of vectors on f−1(γ). An easy calculation shows that this smooth vector
field still lifts the vector field γ′(t) over the path. Integration of the field of
vectors defined on f−1(γ) gives us the desired mappings.

These mappings satisfy:

1. Γ0 : Xz0 → Xz0 is the identity on the manifold Xz0 ;

2. Γt verifies that f(Γt(x)) = γ(t), that is, Γt : Xz0 → Xγ(t)

3. the family is consistent with the product structure on Sρ ∩Xz.

Definition 2.1.1. The transformation h := Γ1 : Xz0 → Xz0 is called the
geometric monodromy of the singularity.

Recall that any continuous mapping between topological spaces induces a
corresponding mapping between the homology groups of the spaces.

Definition 2.1.2. The automorphism h∗ induced by the transformation h
on the only non-trivial homology group of the fibre, which is Hn(Xz0), is
called the monodromy operator or the algebraic monodromy of the
singularity.

Let us make two observations.
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1. If we take two another path σ which is homotopic to γ and the cor-
responding family of mappings {Γ̃t : Xz0 → X, t ∈ [0, 1]}, lifting the
homotopy between those two paths we get that the mappings Γt and
Γ̃t are homotopic as well. Since homotopic mappings induce the same
homomorphism in the homology groups, we conclude that the mon-
odromy operator is uniquely defined by the class of the loop γ in the
fundamental group π1(D∗, z0).

2. If we consider a loop τ in that fundamental group which is obtained
as the concatenation τ1 ∗ τ2 where we first go along τ1 and then along
τ2, it is clear that the monodromy operator will be

hτ∗ = hτ2∗ ◦ hτ1∗.

Therefore, we see that the correspondence assigning to each class of a loop
γ based at z0 the algebraic monodromy constructed from it h∗γ defines an
action of the fundamental group π1(D∗, z0) on the homology group of the
fibre Hn(Xz0), that is, it is an antihomomorphism

π1(D∗, z0)→ Aut(Hn(Xz0)).

Now, let us study the automorphism h
(r)
γ∗ induced by hγ in the only non-

trivial relative homology group Hn(Xz0 , ∂Xz0). We consider a relative cycle,
that is a cycle δ ∈ Cn(Xz0) such that ∂δ ∈ Cn−1(∂Xz0). Since hγ |∂Xz0 = id,
we can conclude that ∂hγδ = ∂δ. Therefore the cycle hγδ − δ is actually an
absolute cycle on Xz0 , and the mapping

δ → hγδ − δ

induces a homomorphism Hn(Xz0 , ∂Xz0)→ Hn(Xz0).

Definition 2.1.3. The previous homomorphism

varγ : Hn(Xz0 , ∂Xz0)→ Hn(Xz0)

is called the variation operator of the singularity. It is also denoted by
Varf .

Let us investigate what happens with the variation operator of the class of
a loop τ ∈ π1(D \ {zi}, z0) which is a concatenation τ1 ∗ τ2 of two classes in
that same fundamental group.

It is easy to see that

hτ∗ − id = hτ2∗ ◦ hτ1∗ − id = hτ1∗ − id + hτ2∗ − id + (hτ2∗ − id) ◦ (hτ1∗ − id).

Therefore, the variation operator satisfies

varτ = varτ1 + varτ2 + varτ2 ◦ i∗ ◦ varτ1 (2.1)
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where i∗ : Hn(Xz0)→ Hn(Xz0 , ∂Xz0) is the natural homomorphism induced
by the inclusion. This relation will be helpful in the sections to come.

2.2 The monodromy of the Morse singularity

In this section, we study the monodromy and variation operators of the
easiest type of singularity we know: the Morse singularity. Let f :
(Cn+1, 0) → (C, 0) be the germ on an analytic function with an isolated
non-degenerate critical point at the origin.

We begin by studying the particular cases for the lowest dimensions: n = 0
and n = 1, since they will give us some important intuitions. Afterwards,
we explain the case for higher dimensions.

2.2.1 Particular cases of dimension n = 0 and n = 1

If n = 0 we know that, maybe after a change of coordinates, f : (C, 0) →
(C, 0) is simply f(x) = x2. For z 6= 0, the Milnor fibre here consists of two
points

Xz = {
√
z,−
√
z}.

If we consider the path γ(t) = z · exp{2πit} for t ∈ [0, 1] and we lift it via f ,
we get the mappings

Γt(
√
z) =

√
z · exp{πit}, Γt(−

√
z) = −

√
z · exp{πit}.

Therefore, we see that the monodromy h in this case interchanges the points
of the Milnor fibre.

If n = 1, again maybe under a change of coordinates we have the germ
f : (C2, 0)→ (C, 0) defined as

f(x, y) = x2 + y2.

In lemma 1.2.2, we proved that a fibre in this case

Xz = {x2 + y2 = z}

is diffeomorphic to a disk subbundle of the tangent bundle of the sphere S1,
of real dimension n = 1. We represent this space as a cylinder S1×[0, 1] since
both have the same homotopy type, and the considerations we are going to
maek here are defined up to homotopy equivalence. The only non-trivial
homology group of the cylinder H1(S1 × [0, 1]) is generated by the class of
the real circle S1, which we will call ∆.

Projecting the Milnor fibre onto the complex x-line, we realise it as the
Riemann surface defined by the function

x =
√
z − y2,
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that is, a two-fold cover ramified at the two points
√
z and −

√
z. This surface

is obtained as two copies on the complex y-line glued along the real segment
(−
√
z,
√
z). Each copy of the y-line is homeomorphic to half a cylindre, the

segment (−
√
z,
√
z) corresponding to the circle S1 we fixed before.

Let us construct the monodromy. We fix some α > 0 in the target complex
line and consider the path

z(t) = α · exp{2πit}, t ∈ [0, 1].

Then, following what we have just explained, for each point of the path we
obtain the Riemann surface associated to

x =
√
z(t)− y2.

Therefore, as the parameter t goes through the interval [0, 1] the branch
points x = ±

√
z(t) = ±

√
α · exp{πit} move around the origin 0 ∈ C anti-

clockwise. When we arrive to t = 1, the branch points have interchanged
but we obtain the same Riemann surface that we had at the beginning. The
situation just described is depicted in figure 2.1. In the upper part we pic-
ture the Riemann surfaces associated to the Milnor fibres, with their branch
points and the segment where both lines join. Then we picture the initial
and ending Milnor fibres, which are the same.

Figure 2.1: Monodromy of the germ f(x, y) = x2 + y2. The real circle δ is a
generator of the class ∆ generating the homology of the fibre.

Now, if we consider a circle δ going round the union of the two complex
lines of the Riemann surface, its class in the homology group of the fibre
will correspond to ∆ and be a generator of this group. We see that, under
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the action of the monodromy, this class stays the same. Therefore, the
monodromy acts as identity on H1(Xz,Z):

h∗ = Id.

However, that does not mean that the monodromy is trivial. For example,
we could study its action on a relative cycle τ from the relative cohomology
group H1(Xz, ∂Xz;Z) like the one we show in figure 2.2. We find that the
monodromy transforms this cycle in another which is obtained by adding
the cycle we considered in the previous example h(τ) = τ + δ. We see that
the variation operator in this case acts over τ bringing it to δ. Since τ is
a generator of the relative homology group H1(Xz, ∂Xz;Z) we also obtain
that

var = Id.

Figure 2.2: Monodromy acting on a relative cycle τ ∈ H1(Xz, ∂Xz;Z).

2.2.2 General case: Picard-Lefschetz theorem

Let us study what happens in higher dimension. We consider f : (Cn+1, 0)→
(C, 0) the germ of an analytic function with an isolated non-degenerate crit-
ical point at the origin.

The action variation operator for the Morse singularity in arbitrary di-
mension is described by the Picard-Lefschetz theorem. To understand
that theorem, we need to review some notions about intersection theory.

Let M be a manifold, and S1 and S2 two submanifolds of M such that
dimS1 + dimS2 = dimM . If we have TpS1 ⊕ TpS2 = TpM for some p ∈
S1 ∩ S2, we say that S1 and S2 intersect transversally on p. If we also
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suppose that M is an orientable manifold, we can define:

εp :=

{
+1, if TpS1 ⊕ TpS2 has the orientation of TpM ;
−1, if TpS1 ⊕ TpS2 has the opposite orientation of TpM.

Definition 2.2.1. If S1 and S2 intersect transversally in every point p ∈
S1 ∩ S2 we define the intersection number between S1 and S2 as

S1 ◦ S2 :=
∑

p∈S1∩S2

εp.

If we work with compact manifolds, we can show that the intersection number
of two submanifolds is well-defined with respect to its class of homology
in H∗(M). Moreover, given two closed submanifolds of M , they can be de-
formed in their homology classes so that they intersect transversally in any
point of their intersection. In particular, this means that self-intersection,
that is, the intersection number of a closed manifold with itself, is well de-
fined.

As a consequence of the previous observations, from now on we will talk only
about the intersection number of cycles, referring to the intersection number
of some representatives of those classes for which the intersection number is
well defined.

Now, from Lefschetz duality (which is a version of Poincaré duality having
in consideration the boundary of the manifold) we can conclude that if z0 ∈
∂D is a non-critical value of f , the homology groups Hk(Xz0 , ∂Xz0) are
isomorphic to Hk(Xz0). Therefore we have

Hk(Xz0 , ∂Xz0) = 0, for k 6= n; Hn(Xz0 , ∂Xz0) = Z.

Moreover, this duality theorem gives us a generator of the only now triv-
ial relative homology group. We fix a cycle ∆ ∈ Hn(Xz0) generating the
absolute homology group. Then we can assure that Hn(Xz0 , ∂Xz0) will be
generated by a relative cycle ∇ dual to ∆. When we say that the cycle is
dual, we mean by the duality induced by the intersection number, that is, ∇
satisfies

(∇ ◦∆) = 1.

Theorem 2.2.1 (Picard-Lefschetz). The action of the variation operator
of the Morse singularity over the previous generator is the following

Varf (∇) = (−1)
(n+1)(n+2)

2 ∆.
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A proof for the Picarf-Lefschetz theorem can be found in section 2.4 of [3].

If we take a general relative cycle a ∈ Hn(Xz0 , ∂Xz0), we will have a = m ·∇,
where m = (a ◦∆). Therefore, the variation operator acting on a will take
the following form

Varf (a) = (−1)
(n+1)(n+2)

2 (a ◦∆)∆.

Furthermore, recalling the relations 2.1 between the variation and the mon-
odromy operators, we also have that for b ∈ Hn(Xz0) the monodromy
operator will act in the following manner

h∗(b) = b+ (−1)
(n+1)(n+2)

2 (b ◦∆)∆. (2.2)

This last formula is usually called the Picard-Lefschetz fomula.

To understand the action of h∗ over the generator ∆ ∈ Hn(Xz0), we compute
the self-intersection of this cycle. Making some easy changes of coordinates
in the target disk of the Morse function f we shall suppose that z0 = 1.

We know that the Milnor fibre X1 is diffeomorphic to the disk subbundle
of the tagent bundle on the standard sphere Sn of real dimension n (see
theorem 1.2.2). Therefore, the generator ∆ that we are considering can be
obtained as the class of that sphere in the homology group of the fibre.

If we consider the orientation of the manifold X1 induced by the structure
of the tangent bundle of the sphere, we get that, for example at the point
(1, 0, ..., 0), a positively oriented coordinate system will be

u2, u3, ..., un+1, v2, v3, ..., vn+1

where each complex coordinate has been descomposed as xj = uj + ivj ,
j = 1, ..., n+1. However, if we consider its orientation as a complex manifold,
a positively oriented coordinate system would be

u2, v2, u3, v3, ..., un+1, vn+1.

Therefore, after a little calculation, we can see that these two orientations
differ by the following sign

(−1)
n(n−1)

2 .

This is relevant due to the following theorem, which we will not prove but
which can be consulted in the first chapter of [3].

Theorem 2.2.2. The self-intersection number of the zero section of the
tangent bundle of a manifold coincides with the Euler characteristic χ of this
manifold.
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Now, it is a fact commonly known that the Euler characteristic of the n-
dimensional sphere is the following

χ(Sn) = 1 + (−1)n,

which is equal to 0 for odd n and 2 for even n. Therefore, we can con-
clude that the self intersection number of ∆ in X1 oriented according to the
structure of the tangent bundle is the following

(∆ ◦∆) = 1 + (−1)n.

Combining this fact with the relation between the orientations of X1 as a
subbundle and as a complex manifold, we have the result we were looking
for.

Lemma 2.2.1. The self intersection number of the vanishing cycle ∆ in the
complex manifold X1 is equal to

(∆ ◦∆) = (−1)
n(n−1)

2 [1 + (−1)n] =


0, for n ≡ 1 mod 2;

+2, for n ≡ 2 mod 4;
−2, for n ≡ 0 mod 4.

With this lemma in mind we see that the algebraic monodromy acting on
the generator ∆ follows the same pattern that we encountered in the cases
n = 0 and n = 1, that is:

• for n even, the monodromy operator acts as h∗(∆) = −∆,

• whereas for n odd, its action is h∗(∆) = ∆.

2.3 Studying the monodromy from a morsification

In this section, we use a morsification {fλ : Xλ → D : |λ| ≤ λ0}, that is,
a perturbation of f satisfying the conditions of theorem 1.2.1, to study the
geometric and algebraic monodromy of a singularity as defined in section
2.1.

We fix some function fλ from the morsification. Let {pi,λ : i = 1, ..., µ} be
the critical points of fλ, where µ = µ(f, 0) and which are all non-degenerate.
Let {ziλ} be the critical values zi,λ = f(pi,λ), which are different. Let us fix
z0 ∈ ∂D a non-critical value of fλ.

We consider a set of paths ui,λ : [0, 1] → D joining the critical value zi,λ to
the non-critical value z0, that is, satisfying u(0) = zi,λ and u(1) = z0. We
also suppose that these paths are non-intersecting: their only common point
is z0. Observe that in section 1.3.1 we already considered a set of paths
like these. With them, we define the following loops going round the critical
values.
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Definition 2.3.1. A simple loop τi,λ corresponding to the path ui,λ is the
class in π1(D \ {zi}, z0) of the loop going along the path ui,λ from the point
z0 to the point zi,λ, going around zi,λ in the positive direction (anticlockwise)
and returning to z0 along the path ui,λ again.

Recall the notations from section 1.3.1. There, we considered the disks Dεi ⊂
Dε in the conditions of lemma 1.1.2 for the critical values zi,λ, and called αi,λ
the part of the paths ui,λ joining z0 to the boundary of Dεi . Considering the
paths γi,λ going along ∂Dεi anticlockwise, we can describe the simple loop
τi,λ as

τi,λ = αi,λ ∗ γi,λ ∗ α−1
i,λ .

This situation is depicted in figure 2.3.

Figure 2.3: Simple loops of a morsification.

Now, we note that fλ is locally trivial when restricted to

X∗λ := f−1
λ (D \ {zi,λ}) ∩ Bρ

and trivial when restricted to

Sρ ∩Xλ.

Therefore, we can define the geometric monodromy hγ,λ and algebraic
monodromy (hγ,λ)∗ for any loop γ : I → D \ {zi,λ} based at z0 as we
did in section 2.1. Using the same arguments of that section we see that if
we consider a loop γ′ based at z0 homotopic to γ, then we obtain the same
monodromy operators: (hγ,λ)∗ = (hγ′,λ)∗.

In particular, consider the loop upon which we constructed the monodromy
of the singularity

γ(t) = z0 · exp{2πit}, t ∈ [0, 1].
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We can use this loop to construct the monodromy of every function fλ from
the morsification since there are no critical values in D for any of those
functions.

Let us see that can drop the dependence on λ on the notations for the
monodromy operators for this loop. First, observe that we know that the
fibres Xz0,λ are diffeomorphic for every |λ| ≤ λ0, so that their homology
groups Hn(Xz0,λ) are all isomorphic and we can identify them. The same
happens with the spaces D\{zi,λ : i = 1, ..., µ} and their fundamental groups
π1(D \ {zi,λ}, z0) for every |λ| ≤ λ0.

We consider the family of mappings

{Γt,λ : Xz0,λ → X∗λ, t ∈ [0, 1], |λ| ≤ λ0}

obtained as explained in section 2.1 for every function fλ with |λ| ≤ λ0. We
can actually obtain the previous family depending smoothly on the param-
eter λ. Then, we conclude that the mappings Γ1,λ are homotopic for every
|λ| ≤ λ0. Therefore, they induce the same operators (hγ,λ)∗ = (hγ,λ′)∗ for
every |λ|, |λ′| ≤ λ0 which can be considered acting on the same homology
group due to the identifications of the previous paragraph.

With these considerations in mind, for the class of the loop γ in π1(D \
{zi,λ}, z0) we call the algebraic monodromy of fλ along that path simply
hγ∗. What is more, we can conclude that hγ∗ = h∗ where h∗ is the algebraic
monodromy of the singularity defined by f = f0.

Additionally, we have that the loop γ in π1(D \ {zi,λ}, z0) is homotopic to
the concatenation of the simple loops

γ ∼= τ1,λ ∗ τ2,λ ∗ ... ∗ τµ,λ
(cf. figure 2.3). Therefore, we have that

hγ∗ = hτµ,λ∗ ◦ ... ◦ hτ2,λ∗ ◦ hτ1,λ∗.

Consequently, we have proved the following characterisation of the mon-
odromy of a singularity.

Lemma 2.3.1. The algebraic monodromy of the singularity h∗ can be com-
puted from the monodromy operators of the simple loops in the following way

h∗ = hτ1,λ∗ ◦ hτ2,λ∗ ◦ ... ◦ hτµ,λ∗.

Definition 2.3.2. The monodromy operators

hi∗ := hτi,λ∗ : Hn(Xz0)→ Hn(Xz0)

associated to the simple loops τi,λ, for every i = 1, ..., µ, are called the
Picard-Lefschetz operators of the singularity.
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We have already mentioned that the correspondence τ 7→ hτ∗ is an antiho-
momorphism of the fundamental group τ ∈ π1(D \ {zi}, z0) into the group
Aut(Hn(Xz0,λ)) of automorphisms of the homology group Hn(Xz0,λ) which
is isomorphic to the homology group Hn(Xz0).

Definition 2.3.3. The monodromy group of the singularity is the
image of the antihomomorphism

π1(D \ {zi,λ}, z0) → Aut(Hn(Xz0)),
τ 7→ hτ∗.

Since the simple loops τi,λ form a set of generators of the group π1(D \
{zi}, z0), we can conclude that the monodromy group of the singularity will
be generated by the Picard-Lefschetz operators we have just defined.

With the relation 2.1, we can also relate the variation operator of the loop
γ to the variation operators of the simple loops.

Lemma 2.3.2. The action of the variation operator of the singularity f can
be defined by the following expression

Varf = varτ1,λ∗τ2,λ∗...∗τµ,λ

=

µ∑
r=1

∑
i1<i2<...<ir

varτi1,λ ◦ i∗ ◦ varτi2,λ ◦ i∗ ◦ ... ◦ i∗ ◦ varτir,λ .

The conclusion of this section is that we can simplify the problem of studying
the monodromy of a singularity to the problem of studying the action of the
monodromy and variation operators associated to simple loops of a function
from a morsification. Since these loops go round Morse singularities, we
already know their corresponding monodromy and variation operators: they
are the ones described in section 2.2. In the following section we will chose
sets of generators of the homology group Hn(Xz0) and another of the relative
homology group Hn(Xz0 , ∂Xz0) in order to complete this description.

2.4 Vanishing cycles and the Intersection Matrix

Recall again section 1.3.1. There, we saw how to find a family of spheres
{Si : i = 1, ..., µ} in the fibres Xui,λ(t),λ over the path ui,λ, for values of the
parameter t > 0 sufficiently close to 0. For t = 0 the spheres reduced to the
point pi,λ.

We called si to the point of intersection between the paths ui,λ and the disks
Dεi , over which the sphere Si was defined. We can carry those spheres by
the monodromy along the paths αi,λ and thus obtain another set of spheres

{S̃i := hαi,λ(Si) : i = 1, ..., µ}
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all contained in the fibre Xz0,λ which is diffeomorphic to Xz0 .

Definition 2.4.1. The homology class ∆i ∈ Hn(Xz0) corresponding to the
n-dimensional sphere S̃i of the previous construction is called a vanishing
(along the path ui,λ) cycle of Picard-Lefschetz.

It is clear for us now that this definition is unique (modulo orientation) up
to the homotopy class of ui,λ in the set of paths joining zi,λ and z0 and
not passing through any other critical value of fλ. From the construction of
section 1.3.1, we see that a set of vanishing cycles {∆i : i = 1, ..., µ} forms a
basis of the homology group Hn(Xz0).

Definition 2.4.2. The set of cycles ∆1, ...,∆µ vanishing along the paths
u1,λ, ..., uµ,λ from the homology group Hn(Xz0) is called distinguished if
those paths u1,λ, ..., uµ,λ are numbered in the same order in which they enter
z0, counted clockwise, beginning at the boundary ∂U .

For instance, the paths pictured in 2.3 give rise to a set of vanishing cycles. A
basis of distinguished vanishing cycles is called distinguished basis. From
such a basis we obtain another {∇i : i = 1, ..., µ}, this time of the relative
homology Hn(Xz0 , ∂Xz0) dual to {∆i : i = 1, ..., µ}, that is, such that

∇i ◦∆j = δij .

From section 2.2 we have that the matrix expression monodromy and vari-
ation operators of the singularity in these basis will be determined by the
intersection of their cycles. The intersection theory in a manifold of finite
homology generated by the cycles {∆i : i = 1, ..., µ}, such as the Milnor fibre
Xz0 , can be summarised in the intersection matrix.

Definition 2.4.3. The matrix

S = (∆i ◦∆j)

is called the intersection matrix.

For the set of vanishing cycles we will call this matrix the intersection matrix
of the singularity.

Definition 2.4.4. The bilinear form associated with the singularity is
an integral bilinear form defined by the intersection number on the homology
group Hn(Xz0) of the non-singular level manifold of the function f .

The intersection matrix of the singularity is then the matrix of the bilinear
form with respect to the basis of vanishing cycles {∆i : i = 1, ..., µ}. Observe
that we computed its diagonal elements in lemma 2.2.1.

With all these preparations and following lemma 2.3.2, we are in the position
to state the following.
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Theorem 2.4.1. The action of the variation operator of the singularity on
the cycle ∇i is the following

Varf (∇i) = (−1)
(n+1)(n+2)

2 ∆i +
∑
j<i

cji∆j

where cji are certain integers.

Two important consequences follow from this theorem .

Corollary 2.4.1.1. With respect to a distinguished basis the matrix of the
variation operator Varf of a singularity f is upper triangular matrix with
diagonal entries equal to (−1)

n(n−1)
2 .

Therefore, Varf is an isomorphism. Moreover, from the Picard-Lefschetz
formula (equation 2.2) we have the next corollary as well.

Corollary 2.4.1.2. The intersection matrix of a set of distinguished van-
ishing cycles determines the algebraic monodromy h∗.
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Chapter 3

Direct sum of singularities

In this chapter, we study how to combine two singularities in one using a
construction due to Thom and Sebastiani called the direct sum of singular-
ities. Then, we will investigate the topology of the singularity obtained in
that construction using methods related to Picard-Lefschetz theory. We will
give a description of the variation operator and the Intersection Matrix of
this direct sum. We follow section 2.7 of [3].

3.1 Direct sum of singularities

Let us introduce the main object of this chapter.

Definition 3.1.1. Let f : (Cn, 0) → (C, 0) and g : (Cm, 0) → (C, 0) two
singularities. We define the direct sum of those as the germ of the function

f ⊕ g : (Cn+m, 0)→ (C, 0), f ⊕ g (x, y) = f(x) + g(y).

Note that the direct sum of two singularities is a singularity as well, since
the function we have just defined also has an isolated critical point at the
origin. Concerning the Milnor number of this singularity we have the next
lemma.

Lemma 3.1.1. The Milnor number of the direct sum of the singularities
f : (Cn, 0)→ (C, 0) and g : (Cm, 0)→ (C, 0) is

µ(f ⊕ g) = µ(f)µ(g).

Proof. We can take fλ one of the perturbations of the morsification of f and
gν another, from the morsification of g, such that fλ + gν is a perturbation
from the morsification of f ⊕ g. The function fλ has µ(f) non-degenerate
critical points pi and the function gν has µ(g) critical points qj . Therefore,
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fλ + gν has indeed µ(f)µ(g) non-degenerate critical points: the ones given
by the pairs (pi, qj).

3.2 Homology of the join of two topological spaces

To give a description of the Variation Operator of the direct sum of two
singularities, we first need to introduce the concept of join of two topological
spaces and to study its homology groups.

Definition 3.2.1. Le X and Y be two topological spaces. The join X ∗ Y
of those is the quotient space

X × [0, 1]× Y
∼

where ∼ is the equivalence relation defined by:

(x, 0, y1) ∼ (x, 0, y2) for any y1, y2 ∈ Y, x ∈ X;

(x1, 1, y) ∼ (x2, 1, y) for any x1, x2 ∈ X, y ∈ Y.

This construction can be seen as a space with a copy of X in its base X ×
{0} × Y and a copy of Y at its top X × {1} × Y containing all the possible
non-intersecting segments joining each point of X to each point in Y .

If Y is a set consisting in only one point, the join X ∗ Y coincides with the
cone over X. On the other hand, if Y is a set consisting of two points, the
join is homeomorphic to the suspension of the space X.

Lemma 3.2.1. Let us consider that the homology groups of X and Y have
no torsion, or that they are being considered with coefficients in a field. Then,
the reduced homology group H̃n(X ∗ Y ) of the join of those is isomorphic to

H̃n(X ∗ Y ) =
⊕

0≤k≤n−1

H̃k(X)⊗ H̃n−k−1(Y ).

Proof. Let us see how to obtain the previous expression for the homology
groups. First, we will prove that the join of the spaces X ∗Y is homotopic to
the suspension of the smash of those same spaces X ∧ Y . Given two points
x0 ∈ X and y0 ∈ Y , the smash of two topological spaces X and Y is defined
as the quotient space

X ∧ Y =
X × Y
∼

where ∼ is the equivalence relation defined by (x, y0) ∼ (x0, y) for all x ∈ X
and y ∈ Y . Therefore is we consider the space

X ∨ Y = X × {y0} ∪ {x0} × Y ⊂ X × Y
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we also have
X ∧ Y =

X × Y
X ∨ Y

.

If we now consider the suspension of this space, we obtain

S(X ∧ Y ) =
X × Y × I
∼

where
(x, y0, t) ∼ (x0, y, t), ∀x ∈ X, y ∈ Y, t ∈ I;

(x1, y1, 0) ∼ (x2, y2, 0) ∀x1, x2 ∈ X, y1, y2 ∈ Y ;
(x1, y1, 1) ∼ (x2, y2, 1) ∀x1, x2 ∈ X, y1, y2 ∈ Y.

Thus, this is exactly the spaceX∗Y where we have introduced a new relation.
This relation is equivalent to collapsing in X ∗Y the space X ∗ {y0}∪ {x0} ∗
Y to a point. Since X ∗ {y0} ∪ {x0} ∗ Y is the union of two cones, this
is a contractible space, and that collapsing preserves the homotopy type.
Therefore, we conclude that X ∗Y has the same homotopy type as S(X∧Y ),
and their homology groups coincide.

Now, using the Mayer-Vietoris sequence is easy to see that H̃n(S(X ∧Y )) ∼=
H̃n−1(X ∧ Y ) for every n ≥ 1. Combining this with the Künneth formula
for relative homology we have

H̃n(X ∗ Y ) = H̃n−1(X ∧ Y ) = H̃n−1(X × Y,X ∨ Y ) =

=
⊕

0≤k≤n−1

H̃k(X × Y, {x0} × Y )⊗ H̃n−1−k(X × Y,X × {y0}) =

=
⊕

0≤k≤n−1

H̃k(X)⊗ H̃n−k−1(Y ).

3.3 The Variation Operator of the direct sum

To study the action of the Variation Operator of the direct sum we have
to understand the homology groups of its non-singular manifold near the
singular level set. This will be the first objective of this section. Then we
will describe this Variation Operator.

Let f : (Cn+1, 0) → (C, 0) be a singularity. Let Xz0 be a non-singular level
manifold of the singularity near the critical point, that is

Xz0 := f−1(z0) ∩ Bρ

for |z0|, ρ > 0 sufficiently close to 0 . Let u : [0, 1]→ C be a path joining the
non-critical value z0 to the critical value 0.
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Lemma 3.3.1. There exists a continuous family of mappings

Ht : Xz0 → Xu(t) = f−1(u(t)) ∩ Bρ, for t ∈ [0, 1]

such that

1. H0 = id : Xz0 → Xz0;

2. Ht is the inclusion Xz0 → Xu(t) for t ∈ [0, 1);

3. H1 maps Xz0 onto the point 0 ∈ Cn.

Proof. The situation described in this proof can be pictured in the image
3.1. First, let us take a sequence ρ = r0 > r1 > r2 > ... > 0 monotonically
decreasing to 0, and the corresponding |z0| = ε0 > ε1 > ... > 0 such that
f−1(z) intersects transversely the sphere or radius ri for every z with |z| ≤
εi. Those spheres are the boundary of the closed balls we are considering:
∂Bri = Sri .

From the Ehresmann theorem, we know that the function f defined between
the spaces

Ei := f−1(Dεi) ∩ (Bρ \ Bri)→ Dεi
is locally trivial. Since the space Dεi is contractible, this is actually a trivial
fibration. These trivializations can be chosen to coincide on

Ei ∩ Ei−1 = f−1(Dεi) ∩ (Bρ \ B̊ri−1).

Now, since we can suppose the image of the path u to be contractible, we
know that f is trivial when restricted to its preimage in the ball Bρ. There-
fore, we can lift the homotopy which collapses the path u to the critical
value 0 ∈ C and find a family of continuous mappings Gt : Xz0 → Xu(t).
This family can be chosen preserving the product structure on Ei. Since
f−1(u(t)) ∩ Ei is contractible for every |u(t)| ≤ εi, we can actually find a
family Ht : Xz0 → Xu(t) with the properties of the lemma.

We will use this previous lemma to give a description of the homology groups
of the non-singular level manifolds of the direct sum of singularities as we
announced. Let f : (Cn, 0) → (C, 0) and g : (Cm, 0) → (C, 0) be two
singularities. We take representatives of those with the same target disk Dε.
For z0 ∈ ∂Dε, we call

Xz0(f) = f−1(z0) ∩ Bρ1
and

Xz0(g) = g−1(z0) ∩ Bρ2
the non-singular level manifolds of those singularities. Consider a path u(t)
non-self-intersecting in the target plane of f which joins z0 to the critical
value 0 ∈ C. With no loss of generality we could assume that u(t) = (1−t)z0
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Figure 3.1: Setting for the proof of lemma 3.3.1.

with 0 ≤ t ≤ 1. We also consider v(t) = z0 − u(1 − t) another non-self-
intersecting path, now in the target plane of g, joining z0 and 0. Let

Ht(f) : Xz0(f)→ Xu(t)(f), Ht(g) : Xz0(g)→ Xv(t)(g)

be the families of functions obtained in the previous lemma.

With all these preparations we define the following inclusion of the join
Xz0(f) ∗Xz0(g) into the level set (f ⊕ g)−1(z0) ⊂ Cn+m:

j(x, t, y) = (Ht(f)(x), Ht(g)(y)).

Being a little careful with how we take the radii ρ1 and ρ2, for example
taking them to be

ρ1, ρ2 ≤
ρ

2
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for the Milnor radius ρ of the singularity (f ⊕ g), we can conclude that j
is an inclusion of the join Xz0(f) ∗ Xz0(g) into the non-singular manifold
Xz0(f ⊕ g) = (f ⊕ g)−1(z0) ∩ Bρ.

In the previous section we described the homology groups of the join of two
spaces. Since we know that the only non-trivial homology groups of Xz0(f)
and Xz0(g) are Hn−1(Xz0(f)) and Hm−1(Xz0(g)) respectively, we have an
isomorphism:

Hn+m−1(Xz0(f) ∗Xz0(g)) ∼= Hn−1(Xz0(f))⊗Hm−1(Xz0(g)).

This isomorphism together with the inclusion

j : Xz0(f) ∗Xz0(g)→ Xz0(f ⊕ g)

define the homomorphism

j∗ : Hn−1(Xz0(f))⊗Hm−1(Xz0(g))→ Hn+m−1(Xz0(f ⊕ g)).

In [4] the following lemma was proved:

Lemma 3.3.2. The homomorphism j∗ is an isomorphism and the inclusion
j is a homotopy equivalence.

The previous statement allows us to identify

Hn+m−1(Xz0(f ⊕ g)) ∼= Hn−1(Xz0(f))⊗Hm−1(Xz0(g)).

This identification involves another on the relative homology groups

Hn+m−1(Xz0(f⊕g), ∂Xz0(f⊕g)) ∼= Hn(Xz0(f), ∂Xz0(f))⊗Hm−1(Xz0(g), ∂Xz0(g)).

We can now state the action of the Variation Operator of the direct sum of
singularities.

Theorem 3.3.1. Let f : (Cn, 0) → (C, 0) and g : (Cm, 0) → (C, 0) be two
singularities. Then we have

Varf⊕g = (−1)nmVarf ⊗Varg.
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Chapter 4

The Cohomology Bundle

Let f : (Cn+1, 0) → (C, 0) be the germ of an analytic function, and recall
once again the notations from section 1.1.1. In the previous chapters we have
studied the algebraic monodromy of the singularity. This operator allowed us
to define homomorphisms between the homology groups of the Milnor fibres
Hn(Xz;Z), with z ∈ D∗, after connecting those fibres with paths in D∗.
This idea of carrying one fibre to another in a fibre bundle in the motivation
behind the definition of connections on bundles. In this chapter we use this
approach to study the monodromy of the singularity.

In the first section, we define the cohomology bundle and describe a system
of trivializations for it with the convenient feature of having locally constant
transition maps. In the second section, we review the theory of connections
in bundles, and use it to define a connection in the cohomology bundle from
the trivializations introduced before. We introduce the notion of holonomy
and conclude that the holonomy of the cohomology bundle is precisely the
algebraic monodromy, as one would expect. In the third section, we intro-
duce the horizontal sections, since the holonomy is realised by those, and
characterise them with the covariant derivatives. We will end up the chap-
ter by studying these concepts applied to the Milnor fibration of an isolated
hypersurface singularity. In this situation, we will be able to define a holo-
morphic structure on the cohomology bundle and we will find that the bundle
is analytically trivial outside the zero 0 ∈ C.

The references for this chapter vary from section to section, and therefore,
they will be indicated at the beginning of each of those.

4.1 The cohomology bundle

As stated before, we begin by constructing the main object of the chapter:
the cohomology bundle, and specifying a convenient system of trivializations

35



of that bundle. We follow the first half of section 2 of [8], completing the
details of that expostion.

Let π : E → M be a smooth fibre bundle, where the fibre F and the basis
M are both smooth manifolds. Let us also assume that F has the homotopy
type of a finite complex. Note that this is the case of the Milnor fibratio

π := f |X∗ : X∗ → D∗

with the notations of section 1.1.1.

We define a smooth complex vector bundle π : Hn(π)→M where the total
space Hn(π) is the following set

Hn(π) := {(z, α) ∈M ×Hn(Xz;C)}

with Xz = π−1(z) and the projection is simply

π : Hn(π) → M
(z, α) 7→ z

.

Definition 4.1.1. The complex vector bundle π : Hn(π)→M is called the
cohomology bundle.

The vectorial structure of the fibres is clear, since the cohomology groups are
being considered with coefficients in the field of the complex numbers. Next,
we point out a natural system of local trivializations on the cohomology
bundle.

Let {Ui} be a covering of M by open sets, each a trivialization domain of
π : E →M . Associated to those we have the transition functions

gij : Ui ∩ Uj → Aut(F ).

For each trivialization domain U ⊂ M , if we call E|U = π−1(U), the dif-
feomorphism ψU : E|U → U × F gives us by restriction an identification
ψU,z : Xz → F for every z ∈ U . Thus, we have an isomorphism

ψ∗U,z : H∗(F ;C)→ H∗(Xz;C).

With that, we define a local trivialization of Hn(π) over U by the diffeomor-
phism

ΨU : Hn(π)|U → U ×Hn(F ;C)
(z, α) 7→ ΨU (z, α) = (z, (ψ∗U,z)

−1(α)).
(4.1)

For the previous covering, the composition

ΨUj ◦ (ΨUi)
−1 : (Ui ∩ Uj)×Hn(F ;C) → (Ui ∩ Uj)×Hn(F ;C)

(z, α) 7→ (z, (ψ∗Uj ,z)
−1 ◦ (ψ∗Ui,z)(α))
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takes the form
(z, α) 7→ (z, (gij(z))

∗ (α))

since
(ψ∗Uj ,z)

−1 ◦ (ψ∗Ui,z) = (ψUi,z ◦ ψ
−1
Uj ,z

)∗ = (gij(z))
∗

Note that, if we choose V ⊂ Ui ∩ Uj connected, for every z ∈ V we have
that (gij(z))

∗ does not depend on z because all the gij(z) are homotopic.
Therefore, the transition functions of this trivialization of the cohomology
bundle are locally constant maps and π is what is called a local system
(see section 5.2). In the following sections we see that, by construction, the
holonomy of π is the algebraic monodromy and it is realised by the locally
constant sections.

4.2 Connections on bundles, locally flat connections
and holonomy

In this section, we recall the definition of connection on a fibre bundle, fol-
lowing the approach of [5]. Then we define linear and locally flat connections,
and give a characterisation of those in terms of a local matrix expression of
the connection. Finally, we introduce the concept of holonomy on a fibre
bundle. This last two parts are explained following [6]. As a complement,
we apply all the previous concepts to the example of our interest: the coho-
mology bundle.

First, we note that if we have a fibre bundle π : E →M where π is smooth,
we can define another fibre bundle π∗ : TE → TM where

π∗ : TE → TM
ξ = (p, v) 7→ π∗ξ := (π(p), dπpv)

which is well defined since dπpv ∈ Tπ(p)M . Having that in mind, we state
the following.

Definition 4.2.1. Let π : E → M be a fibre bundle with π smooth. The
vertical bundle V E → E is the subbundle of TE → E defined by

V E := {ξ ∈ TE : π∗ξ = 0} → E.

Its fibres VpE := V Ep ⊂ TpE are called vertical subspaces.

From its definition, we observe that VpE = Tp(Eπ(p)). Now we can introduce
the definition of connection on a fibre bundle.

Definition 4.2.2. A connection on a fibre bundle π : E →M is a smooth
distribution HE on E such that HE ⊕ V E = TE, namely, for every p ∈ E
we have that HpE ⊕ VpE = TpE where HpE := HEπ(p) ⊂ TpE is called the
horizontal subspace at p.
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Example 4.2.1. Given the cohomology bundle, for every trivialization do-
main U ⊂M we encounter (cf. 4.1)

Hn(π)|U
ΨU−−→ U ×Hn(F ;C).

This local product structure allows us to choose locally the horizontal and
vertical distributions that define a connection: we take the pullback of the
splitting of the tangent bundle of U ×Hn(F ;C) induced by the diffeomor-
phism ΨU .

Therefore, we define the horizontal subspace at p = (z, α) ∈ Hn(π) as

Hp(H
n(π)) :=

(
dΨ−1

U

)
ΨU (p)

(TzU × {0}) .

These local distributions glue well for different trivialization domains since
the horizontal distribution is tangent to locally constant sections, such as
the transition functions.

In general, let π : E → M be a vector bundle. We consider a system of
local coordinates in U ⊂M , so that we can see U as an open set of Rm and
suppose that we have a local trivialization of E over U

E|U → U × F

where the fibre F is also isomorphic to some real vector space F ∼= Rl. In
this situation, for p = (x, y) ∈ E|U ∼= U ×Rl we can write the connection as

H(x,y)E := {(v,A(x, y) v) : v ∈ Rm} (4.2)

for unique linear mappings A(x, y) : Rm → Rl depending smoothly on (x, y).
This is what we will call the local matrix expression of the connection.

Definition 4.2.3. A connection is linear if and only if the elements of the
matrix A(x, y) of the previous expression depend linearly on y.

Definition 4.2.4. When the horizontal distribution is locally flat in the
tangent bundle of the total space, we say that the connection is locally flat.

For a locally flat connection in a vector bundle π : E →M we can always find
local matrix expressions in which the matrices A(x, y) are the zero matrix.

Example 4.2.2. Let us find the matrix expression for the connection on the
cohomology bundle that we defined before and conclude that it is a linear
and locally flat connection.

For a trivialization domain U ⊂M we have

Ψ−1
U : U ×Hn(F ;C) → Hn(π)

(z, β) → (z, (ψU,z)
∗(β))
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.

We know that, if U is connected, the isomorphisms ψU,z are homotopic for
every z ∈ U . Therefore, the induced mappings in the cohomology groups
(ψU,z)

∗ do not depend on the point z (they are the same for every z ∈ U).
Therefore, for (z, β) ∈ U ×Hn(F ;C) the differential

(dΨ−1
U )(z,β) : TzU ×Hn(F ;C)→ TΨ−1

U (z,β)H
n(π)

has as matrix

(dΨ−1
U )(z,β) =

(
In 0

0 ∗

)
.

Thus, the matrix expression for the connection in this case is specially simple

Hp(H
n(π)) =

(
dΨ−1

U

)
(z,β)

(TzU × {0}) = {(v, 0) : v ∈ TzU}.

We see that clearly, this connection is linear. What is more, we obtain that
the connection is locally flat.

Lastly, let us make some comments about the holonomy of a fibre bundle.
Let π : E → M be a smooth bundle with smooth connection HE and let
γ : I →M be a smooth curve in M .

Definition 4.2.5. A smooth curve δ : I → E is called a horizontal lift of
γ if

1. π ◦ δ = γ, that is, δ(t) ∈ Eγ(t) for every t ∈ I, and

2. for every t ∈ I we have that δ′(t) ∈ Hδ(t)E.

From the local matrix expression of the connection 4.2 it is easy to see that
for every a ∈ I and y ∈ Eγ(a) we can obtain a unique maximal horizontal lift
δy of γ defined on an open interval Iy ⊂ I. We say that the connection HE
allows lifting if for every smooth curve γ : I → M , a ∈ I and y ∈ Eγ(a)

there exists a horizontal lift δ = δy : I → E, defined in the whole interval
I, such that δ(a) = y. We have the following result, whose prove can be
consulted on section 4 of [6].

Lemma 4.2.1. Every linear connection HE in a vector bundle π : E →M
over a smooth manifold M allows lifting.

The thing is that if a connection allows lifting, then the lifting is unique (it
is the solution of an ordinary differential equation) and the mapping

(t, y) 7→ δy(t)
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is a smooth mapping from I×Eγ(a) to E. Moreover we have that δy(t) ∈ Eγ(t)

for every t ∈ I. The mapping

ha,tγ : Eγ(a) → Eγ(t)

y 7→ δy(t)

is a smooth mapping called the parallel transport from the fibre Eγ(a) to
the fibre Eγ(t) along the curve γ in M . Since ht,aγ is a two-sided inverse of
ha,tγ we conclude that this mapping is a diffeomorphism between the fibres
Eγ(a) and Eγ(t).

The lifting can be extended to piecewise smooth continuous curves in M .
It is clear that the parallel transport along the concatenation of two curves
γ1 ∗γ2 is equal to the composition hγ1 ◦hγ2 . If we consider a loop γ : [0, 1]→
M based at some point x ∈ M , the parallel transport along γ is then a
diffeomorphism from Ex onto itself. With all these considerations in mind
we see that the assignation

h : γ 7→ h0,1
γ

if a homomorphism from the group of loops based at x ∈ M (Loop(M,x))
to the group of diffeomorphisms of the fibre Ex onto itself (Diffeo(Ex)).

Definition 4.2.6. The homomorphism h is called the holonomy represen-
tation of Loop(M,x) in Diffeo(Ex). The image h(Loop(M,x)) ⊂ Diffeo(Ex)
is a subgroup called the holonomy group.

Example 4.2.3. Let us apply this last part of the section to the connection
on the cohomology bundle that we defined before. Note that this connection
was in the hypothesis of lemma 4.2.1, so that we know that it allows lifting.
In fact, the local flatness of this connection makes it even more clear that it
allows lifting.

What is more, comparing the definition of the holonomy of that connection
with the way in which we constructed the algebraic monodromy, we can con-
clude that the correspondence induced by the holonomy of that connection
is precisely the correspondence induced by the algebraic monodromy of the
the projection π : E →M .

4.3 Horizontal sections and covariant derivatives

Let us introduce the concept of horizontal sections, define the covariant
derivative along a vector field and conclude that in any locally flat con-
nection, the horizontal sections are precisely the locally constant sections.
We follow for this exposition the approach of [6].
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Let π : E → M be a vector bundle and HE the connection on the bundle.
We know that V E = ker dπ, so that for each p ∈ E we have that

dπp : HpE → Tπ(p)M

is an isomorphism. Therefore, given a vector field v ∈ X(M), we can define
another vector field vhor ∈ X(E) such that for every p ∈ E we have vhor(p) ∈
HpE and such that dπp(vhor(p)) = v(π(p)). This is called the horizontal
lift of the field v.

Now, if s : M → E is a smooth section of the bundle, we have π ◦ s = IdM
so that dπs(z) ◦ dsz = IdTzM for every z ∈M . Moreover, given a vector field
v ∈ X(M), we know that its horizontal lift verifies: dπp(vhor(p)) = v(π(p))
for every p ∈ E. Therefore we can conclude that

dπs(z)(dsz(v(z))) = v(z) = dπs(z)(vhor(s(z)))

which means that dsz(v(z))− vhor(s(z)) ∈ ker dπs(z) = Vs(z)E.

Definition 4.3.1. A smooth section s : M → E is horizontal when

dsz(v(z))− vhor(s(z)) = 0 ⇐⇒ dsz(v(z)) = vhor(s(z))

for every vector field v ∈ X(M).

The space Vs(z)E is the tangent space to the fibre Ez, that is, Vs(z)E =
Ts(z)Ez. Since we are working with vector bundles, the fibres are actually
vector spaces and we can identify their tangent spaces with themselves. With
that, we can define the covariant derivative.

Definition 4.3.2. The covariant derivative of a smooth section s : M →
E along the vector field v ∈ X(M) is the following section of the bunde

∇s : M → E
z 7→ ∇v(z)s := dsz(v(z))− vhor(s(z))

.

Observe that, from the matrix expression of the connection 4.2, it follows
that vhor(s(z)) = (v,A(z, s(z)) v). This leads to the following formula for
the covariant derivative along a vector v ∈ TzM in local coordinates
(z1, ..., zm) in M

(∇vs)i(z) :=

m∑
j=1

∂si

∂zj
vj −

m∑
j=1

Aij(z, s(z))v
j , i = 1, ..., l. (4.3)

From the previous definitions it is clear that a section s : U → E, defined
on an open subset U ⊂M , satisfies ∇s = 0 along any vector field in X(U) if
and only if s is a horizontal section on U .
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Observe that the definition of horizontal section has a local nature. Note
that a general connection defined on a bundle might not have any horizontal
sections. Moreover, even when we find horizontal sections locally, we might
not be able to extend those sections to the whole base to obtain horizontal
global sections.

A particular case of connections which admit local horizontal sections are lo-
cally flat connections. In those, the local horizontal sections are precisely
the locally constant ones. Recall that this is the case for the connection that
we have defined in the cohomology bundle.

4.4 Application to isolated singularities

We will now apply the notions of the previous section to the particular case
of isolated singularities of hypersurfaces. We follow the second half of section
2 of [8].

Let f : (Cn+1, 0)→ (C, 0) the germ of an analytic function with an isolated
critical point at the origin and recall the notations from section 1.1.1. In
this situation we have the Milnor fibration defined between the following
spaces

π := f |X∗ : X∗ → D∗.

We know that the fibre of this bundle has the homotopy type of a bouquet
of µ = µ(f) spheres of real dimension n. Therefore, its only non-trivial
cohomology groups are precisely Hn(Xz;C) = Cµ, and thus, the only non-
trivial cohomologic bundle of the fibre bundle is Hn(π), which has rank µ.

Definition 4.4.1. The complex vector bundle Hn(π) is called the coho-
mology Milnor bundle.

Definition 4.4.2. We will call the locally flat connection defined from the
trivializations on the Milnor bundle, as suggested by Brieskorn in [17], the
local trascendental connection.

4.4.1 Holomorphic structure

The bundle and the connection that we have just described are smooth. In
this section, we give them a holomorphic structure.

To do so, we need to define the holomorphic sections of Hn(π). We state
that a section s : D∗ → Hn(π) is holomorphic if and only if for every z ∈ D∗
there exists an open set U ⊂ D∗ and s1, ..., sµ a basis of locally constant
sections of Hn(π) such that s in U can be written as

s =

µ∑
j=1

φjsj
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where the functions φj : U → C are holomorphic. In particular, the locally
constant sections are holomorphic.

Note that we can define this holomorphic structure because we are working
with a locally flat connection in a complex bundle over a complex manifold.
This definition is well-defined since the transition functions between frames
arising from horizontal sections are locally constant.

4.4.2 Analytic triviality

We have that the cohomology bundle Hn(π) is a holomorphic vector bundle
overD∗ which is a Stein manifold (see section 5.6). We will show in the end of
that section that this implies that the bundle is an analytically trivial vector
bundle. That means that there is a global frame of holomorphic sections
s1, ..., sµ defined in D∗. Note that this sections are not horizontal sections
in general. If we were able to find a basis of horizontal global sections of the
cohomology bundle, the monodromy would be trivial, and this is not true
for general hypersurface singularities.

Because of the analytic triviality, we can consider the trivial vector bundle
over D as an extension of this cohomology bundle to the origin. We call this
extension

Hn(π) := ⊕µi=1 OD
where OD is the ring of holomorphic functions over the disk D. Here, we are
anticipating some notations that we will introduce in the next chapter.

4.4.3 Horizontal sections

Now, we can give an expression for horizontal sections in D∗ as a solution
of a differential system similar to 4.3. We express the condition of being
a horizontal section of the bundle Hn(π) over D∗ in terms of the base of
holomorphic sections on D∗.

Let s1, ..., sµ be the frame of global holomorphic sections of Hn(π) defined
in D∗ from the condition of analytic triviality. We know that a holomorphic
section s in D∗ can be expressed as

s =

µ∑
j=1

φjsj

where the functions φj : D∗ → C are holomorphic.

Let us denote ∇ the covariant derivative along the vector field ∂
∂z of D∗.

We introduced covariant derivatives along vector fields in real coordinates.
Here we can use that we have a basis of holomorphic sections and that the
connection is holomorphic (horizontal sections are holomorphic), so we are
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considering directly a complex coordinate of the base. If we consider the
real coordinates (x, y) such that z = x+ iy, this is only a shortened form of
denoting the covariant derivative along the vector field

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
.

For every j = 1, ..., µ we can express the covariant derivatives along ∂
∂z of

the sections of the basis as

∇sj =

µ∑
k=1

akjsk

where the akj are holomorphic functions defined in D∗.

Therefore, we have, similar to 4.3, the following expression

∇s =

µ∑
j=1

φ′jsj +

µ∑
j=1

µ∑
k=1

akjsk =

µ∑
k=1

(φ′ +
k∑
j=1

akjφj)sk.

Let Φ = (φ1, ..., φµ)t (column vector) and A the matrix given by the coeffi-
cients (akj). Then we have the following lemma.

Lemma 4.4.1. A holomorphic section s =
∑µ

j=1 φjsj of Hn(π) over D∗ is
a horizontal section if and only if the differential equation

Φ′ +AΦ = 0 (4.4)

is satisfied.

We observe that the coefficients of the matrix A are holomorphic functions
in D∗, so they must be meromorphic functions in D.
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Chapter 5

Computing the cohomology
from the complex of forms

In this chapter we justify appearance of holomorphic forms in the classical
study of the monodromy. The main objective of this chapter is showing that
we can actually compute the singular cohomology of the Milnor fibre from
the complex of holomorphic forms defined over it. We begin introducing the
cohomology of sheaves from two different points of view. Then, we review
the notion of a coherent sheaf and a Stein space, in order to state Cartan’s
Theorems A and B. Lastly, we apply all the previous ideas to reach the
objective we have just stated.

We will suppose that the reader is familiar with the definitions of sheaf (and
presheaf), stalk and morphism of sheaves (and presheaves). If this is not the
case, those ideas can be checked in [13] or [12].

5.1 Cohomology of sheaves

A sheaf F defined over a topological space X is a carrier of localized infor-
mation about that space. The motivation for applying techniques of coho-
mological algebra to sheaves is to try to get global information about X from
F .

5.1.1 Čech Cohomology

Let us start by introducing some notations concerning Čech cohomology. We
will follow the approach of Chapter II, section 4 of [13].

Let F be a sheaf of abelian groups over a topological space X and let U =
{Ui} a locally finite covering of X by open sets.
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Definition 5.1.1. We define for each natural number p ≥ 0 the space of
cochains of order p as

Cp(X,F ,U) :=
∏

i0<...<ip

F(Ui0 ∩ ... ∩ Uip).

We have homomorphisms

δp : Cp(X,F ,U)→ Cp+1(X,F ,U)

sending the element whose (i0, ..., ip)-coordinate is si0...ip ∈ F(Ui0 ∩ ...∩Uip)
to the element whose (i0, ..., ip+1)-coordinate is

p+1∑
i=0

(−1)jsi0...̂j...ip+1
|Ui0∩...∩Uip+1

.

These homomorphisms are called coboundary operators. It is easy to see
that δp ◦ δp−1 = 0, so that we have defined a complex of cochains.

We call the p-th Čech cohomology group of F associated to the cover
U to the quotient

Hp(X,F ,U) =
ker(δp)

im(δp−1)
.

We consider a refinement V = {Vj} of U , that is, a locally finite covering
verifying that for every Vj there exists Ui such that Vj ⊂ Ui. Then there is a
group homomorphism connecting Hp(X,F ,U) and Hp(X,F ,V) induced by
the restrictions. Therefore, we can state the following definition.

Definition 5.1.2. We define the p-th Čech cohomology group of F as
the direct limit

Ȟp(X,F) := lim−→
U

Hp(X,F ,U).

Leray proved that if we consider an acyclic covering for the sheaf, that is,
a covering which satisfies

Hp(Ui0 ∩ ... ∩ Uip ,F) = 0, q > 0, any i0, ..., ip;

then H∗(X,F ,U) = Ȟ∗(X,F).

If we consider sheaves E , F and G over a topological space X which verify
the following exact sequence

0→ E α−→ F β−→ G → 0

then there exists a long exact sequence

0→ Ȟ0(X, E)→ Ȟ0(X,F)→ Ȟ0(X,G)

→ Ȟ1(X, E)→ Ȟ1(X,F)→ Ȟ1(X,G)→ ...
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5.1.2 Alternative definition of the cohomology

There exists another approach to the definition of the cohomology of sheaves,
that coincides with Čech cohomology for paracompact spaces. In this section,
we will study this alternative definition. All the proofs and details that we
will omit here can be consulted in Chapter II, Section 3 of [13]. We begin
by recalling resolutions of sheaves.

Definition 5.1.3. A resolution of a sheaf F is an exact sequence of sheaves
of the form

0→ F → F0 → F1 → ...→ Fm → ...,

which might also be denoted by

0→ F → F∗.

Now, we introduce a particular type of sheaves which are essential.

Definition 5.1.4. A sheaf F over a topological space X is soft if for any
closed subset S ⊂ X the restriction mapping

F(X)→ F(S)

is surjective. Namely, any section of F over S can be extended to a section
of F over X.

An interesting feature of soft sheaves is that they present no obstruction to
lifting global sections.

Theorem 5.1.1. If F is a soft sheaf and

0→ F → E → G → 0

is a short exact sequence of sheaves, then the induced sequence

0→ F(X)→ E(X)→ G(X)→ 0

is exact.

This theorem has two important consequences.

Lemma 5.1.1. If F and E are soft and

0→ F → E → G → 0

is exact, then G is soft.

Lemma 5.1.2. If
0→ F0 → F2 → F3 → ...
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is an exact sequence of soft sheaves over X, then the induced sequence of
global sections

0→ F0(X)→ F1(X)→ F2(X)→ F3(X)→ ...

is also exact.

Given any sheaf F over a topological space X, there exists a long exact
sequence of sheaves

0→ F → C0(F)→ C2(F)→ C3(F)→ ...

which we will call canonical resolution of F . We will not enter in the
details of how to define the sheaves Ci(F). We say that this is a soft canonical
resolution since the sheaf C0(F) is soft for any sheaf F . Moreover, when we
work wit a soft sheaf F , from the construction which we did not detail, all
the spaces Cp(F) end up being soft.

We are now in a position to give the alternative definition of the cohomology
groups of a sheaf. Let F be a sheaf over a topological space X and let

0→ F → C∗(F)

its canonical resolution. We denote the set of global sections of a sheaf F in
the following manner

Γ(X,F) := F(X).

With that, we see that by taking global sections this sequence induces an-
other of the form

0→ Γ(X,F)→ Γ(X,C0(F))→ Γ(X,C1(F))→ ...→ Γ(X,Cp(F))→ ...
(5.1)

which is a cochain complex. This is due to the fact that taking global sections
is functorial in the presheaf that we are considering. We denote

C∗(X,F) := Γ(X,C∗(F)).

Definition 5.1.5. We define, for p ≥ 0 the groups

Hp(X,F) := Hp(C∗(X,F))

where Hp(C∗(X,F)) is the p-th derived group of the previous cochain
complex, that is

Hp(C∗) =
ker(Cp → Cp+1)

im(Cp−1 → Cp)
, where C−1 = 0.

Theorem 5.1.2. It can be proved that these cohomology groups of F coincide
with the ones we introduced in definition 5.1.2 if X is a paracompact space.
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This second definition allows us to access very easily to some of the funda-
mental properties of those groups. Let us state some of the most important
ones.

• For instance, we can observe that the sequence 5.1 is exact at Γ(X,C0(F))
since this C(F) a soft sheaf. Therefore, we can assert that

H0(X,F) = F(X).

• We also have that if F is soft, thanks to the lemmas 5.1.1 and 5.1.2,
as we said we can conclude that all the sheaves Cp(F) are soft, and
therefore the sequence of global sections is exact everywhere. Thus, in
this case we have

Hp(X,F) = 0, for p > 0.

• We will need the following property afterwards.

Lemma 5.1.3. For any sheaf morphism

h : A → B

there is, for each q ≥ 0, a group homomorphism

hq : Hq(X,A)→ Hq(X,B)

such that

1. h0 = hX : A(X)→ B(X).

2. hq is the identity map if h is the identity map, for every q ≥ 0.

3. gq ◦ hq = (g ◦ h)q for all q ≥ 0 if g : B → C is another sheaf
morphism.

Lastly, let us make an observation which will be important later. We de-
fined the cohomology groups of a sheaf from the cochain complex 5.1. We
obtained that complex thanks to the functorial behaviour of taking global
sections. Given a point x ∈ X, taking stalks at x is a functorial operation
as well defined on the set of sheaves over X . Therefore, from the canonical
resolution we might define another cochain complex

0→ Fx → C0(F)x → C1(F)x → ...→ Cp(F)x → ... (5.2)

which allows us to define the cohomology of the stalks. We denote those
groups as

Hp(Fx) :=
ker(Cp(F)x → Cp+1(F)x)

im(Cp−1(F)x → Cp(F)x)
, p ≥ 0.
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Since taking stalks is an exact functor over the set of sheaves (it preserves
exact sequences) and it is also additive (it preserves the group structure of
the morphisms between modules), it can be proved that it preserves the
cohomology. Therefore, we can conclude that we actually have, for every
x ∈ X, an isomorphism

Hp(X,F)x ∼= Hp(Fx), ∀p ≥ 0.

5.2 Alternative definition of the cohomology bun-
dle with sheaves

We give an alternative definition for the cohomology bundle as a locally free
sheaf of modules. We follow the exposition in [20].

The first thing we shall note is that there is a bijective correspondence be-
tween vector bundles over a manifoldM and locally free sheaves constructed
over that same space. This bijection is defined by considering the sheaves
of sections (sometimes with additional properties such as being smooth of
holomorphic) over the base space. A locally free sheaf is a sheaf over a
topological space such that locally is isomorphic to a direct sum of copies of
the structure sheaf. In our case, the structure sheaf will be the ring of holo-
morphic functions defined on the base complex manifold. Let us see which
is the locally free sheaf corresponding to the cohomology bundle.

Let X and Y be two topological spaces and f : X → Y a continuous map-
ping. Let also F be a sheaf defined over X. From it, we can define a sheaf
over Y , assigning to each open subset V ⊂ Y the abelian group associated
to f−1(V ), which is an open subset of X.

Definition 5.2.1. The previous sheaf is called the direct image sheaf,
and it is denoted by f∗F .

The operation in the category of sheaves of abelian groups of taking the
direct image constitutes a left exact functor, but not usually right exact. We
can generalise it in the following way.

Definition 5.2.2. For every q ≥ 0, we define the direct image sheaf of
order q as the sheaf Rqf∗F corresponding to the presheaf

U 7→ Hq(f−1(U),F).

Here we are only going to work with direct images of constant sheaves. Let
f : (Cn+1, 0)→ (C, 0) be the germ of a holomorphic function with a critical
point at the origin. Recall the notations from section 1.1.1 and consider a
good representative of the germ f : X → D, whose restriction π := f |X∗ is
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locally trivial. Therefore, if we consider the constant sheaf of integers over
X∗, denoted ZX∗ , its n-th direct image

Rnπ(ZX∗)

is a locally constant sheaf. Locally constant sheaves are also called local
systems. According to the previous definition, its stalk over z ∈ D∗ is equal
to Hn(Xz,Z). This is called the local system of vanishing cycles.

If we take the complexification of the previous sheaf, we get

HD∗ := C⊗Z R
nπ(ZX∗) = Rnπ(CX∗)

which is again a local system. To convert it to a locally free sheaf, we tensor it
with the ring of holomorphic functions onD∗. The resulting sheaf is precisely
the one corresponding to the holomorphic sections of the cohomology
bundle Hn(π) which we denote by

Hn = OD∗ ⊗C HD∗ .

As we know now, this describes cohomology classes that depend holomor-
phically on z ∈ D∗.

Now, we will describe the connection on the cohomology bundle, which will
allow us to obtain the local system of horizontal sections. Let z be a
complex coordinate on D and the standard vector field ∂

∂z dual to dz. This
vector field never vanishes over the space D∗. Since the base space D∗ has
dimension one, to understand the connection it is enough to give the action
of the covariant derivative along the previous vector field:

∇ : Hn → Hn, g ⊗ h 7→ dg

dz
⊗ h.

With that we see that the local system of horizontal sections of the cohomo-
logical bundle is identified with the local system we started with:

HD∗ := ker(∇) ⊂ Hn.

This is another way of seeing how the constant sections realise the mon-
odromy of the singularity.

5.3 Constant sheaves and simplicial cohomology

We will apply the theory of cohomology of sheaves to constant sheaves. We
will see that the cohomology for these sheaves is the simplicial cohomology
which we are used to work with. We follow the reference [12].
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Definition 5.3.1. Considering X a topological space and G an abelian
group, the constant sheaf (with coefficients in G) is defined as the sheaf
associated to the presheaf defined by F(U) = G for every open connected
set U . This sheaf is denoted as GX .

Concerning those sheaves we have the following theorem.

Theorem 5.3.1. For K a simplicial complex with underlying topological
space M we have that the Čech cohomology of the constant sheaf ZM on M
is isomorphic to the simplicial cohomology of the complex K.

Proof. To see this we define, associated to every vertex vα the open set
St(vα), called star of vα, given by the interior of the union of all the simplices
in K having vα as vertex.

All these sets U = {Uα = St(vα)} give rise to a locally finite open covering
of M . The intersection

p⋂
i=0

St(vα)

is nonempty and connected if vα0...αp are the vertices of a p-simplex in the
decomposition of K in p-simplex. Otherwise, it is empty. Therefore, attend-
ing to the definition of Čech cohomology we have that a p-cochain σ of the
sheaf ZM has as (α0, ..., αp) coordinate the following

σα0,...,αp ∈ Z(∩St(vα)) =

{
Z, if vαi span a p− simplex,
0, otherwise.

Let us see how to associate to this p-cochain an element from the simplicial
cohomology. Given that σ ∈ Cp(U ,ZM ) we can define a p-cochain σ′ setting,
for ∆ = 〈vα0 ...vαp〉 a p-simplex with vertices vα0 ...vαp , the following

σ′(∆) = σα0...αp .

The assignation σ 7→ σ′ gives an isomorphism of abelian groups

Cp(M,ZM ,U) ∼= Cp(K,Z)

which commutes with the coboundary operators

δσ′(〈vα0 ...vαp〉) =

p+1∑
i=0

(−1)i+1σ′(〈vα0 ...v̂αi ...vαp〉 = (δσ)′.

Therefore we have actually defined an isomorphism of complexes, hence an
isomorphism

H∗(M,ZM ,U) ∼= H∗(K,Z).

Since we can subdivide the complex K to make the cover U of M arbitrarily
fine without changing H∗(K,Z) we finally obtain the equivalence between
the cohomologies we were looking for.
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The preceding argument can be applied as well if we consider other constant
sheaves, with coefficients in R or C for instance, changing the coefficients for
the simplicial cohomology groups consequently.

Therefore, we have that the simplicial complex cohomology of a topological
space X can be computed from the cohomology of the complex constant
sheaf over that space.

5.4 Abstract de Rham Theorem

Let us state an important theorem which gives a means of computing the
cohomology sheaf. For this chapter we follow the exposition in ??.

Definition 5.4.1. We say that a resolution 0 → F → A∗ of a given sheaf
F over a space X is acyclic if Hp(X,Aq) = 0 for all p > 0 and q ≥ 0.

Observe that this was exactly the situation in soft resolutions. Indeed, if Aq

is a soft sheaf for every q ≥ 0 we have seen that Hp(X,Aq) = 0 for every
p > 0.

With these resolutions we will be able to compute easily the cohomology
groups.

Theorem 5.4.1 (Abstract de Rham Theorem). Let F be a sheaf over
a space X and let

0→ F → A∗

be a resolution of F . Then there is a natural homomorphism

γp : Hp(Γ(X,A∗))→ Hp(X,F)

where Hp(Γ(X,A∗)) is the p-th derived group of the cochain complex

0→ Γ(X,F)→ Γ(X,A∗).

Moreover, if the resolution
0→ F → A∗

is acyclic, then γp is an isomorphism.

The proof of this theorem can be checked on page 59 of [13]. That proof is
constructive, and from the construction of the homomorphism γp, we obtain
the following property.

Corollary 5.4.1.1. Let us suppose that we have the following morphisms of
sheaves

0 F A∗

0 E B∗
f g∗
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which commute with the morphisms of the resolutions

0→ F → A∗, 0→ E → B∗.

Then the corresponding homomorphisms gp : Γ(X,Ap) → Γ(X,Bp) are well
defined in the cohomology groups of the complexes and the following diagram
is also commutative

Hp(Γ(X,A∗)) Hp(X,F)

Hp(Γ(X,B∗)) Hp(X, E)

gp

γp

fp

γp

where the homomorphisms fp are the ones described in lemma 5.1.3.

As a consequence, if the morphism f : F → E of the previous corollary is an
isomorphism and the resolutions

0→ F → A∗, 0→ E → B∗

are acyclic, then all the homomorphisms γp are isomorphisms and we get
that

Hp(Γ(X,A∗)) gp−→ Hp(Γ(X,B∗))

is an isomorphism as well. Let us see some important applications of this
theorem.

Example 5.4.1. Let X be a smooth manifold of real dimension m and let
EpX be the sheaf of real-valued differential forms of degree p on X. Then,
a resolution of the constant sheaf RX is the following

0→ RX
i−→ E0

X
d−−→ E1

X
d−−→ ...

d−−→ EmX → 0, (5.3)

where i is the inclusion of the constant functions into the sheaf of smooth
functions over X and d is the exterior differentiation operator.

To check that this is indeed a resolution, we must see that it is an exact
sequence. Since d2 = 0 we already know that it forms a cochain complex,
and therefore

im(Ep−1 d−→ Ep) ⊂ ker (Ep d−→ Ep+1).

To see the other inclusion, we need the classical Poincaré’s Lemma.

Theorem 5.4.2 (Poincaré’s Lemma). If A ⊂ Rn is an open star-shaped
set with respect to 0 ∈ Rn, then every closed form on A is exact.

The proof of this theorem can be found in page 94 of [18]. Taking local
coordinates, we can bring forms defined locally in the manifold X to an
open subset of Rn, where, maybe reducing that open set in order to have an
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star-shaped one, we can apply that theorem. Therefore, we conclude that
for every f ∈ EpX(U) defined in an open subset U ⊂ X such that df = 0,
there exists u ∈ Ep−1

X (U) so that du = f .

With that, we conclude that the induced mappings dx, on the stalks at any
x ∈ X, are exact. The exactness at the term E0 is an elementary result from
calculus: every f ∈ E0 such that df = 0 must be locally constant. Therefore,
the proposed resolution is an exact sequence, as desired.

This resolution is in fact acyclic, since the sheaves of differentiable forms E∗X
over X are soft sheaves. This happens due to the existence of differentiable
partitions of unity, which allow us extend sections defined in closed subsets,
as the definition 5.1.4 demands. Therefore, the homomorphisms given by
the abstract de Rham theorem are isomorphisms and we arrive to

Hp(X,RX) ∼= Hp(Γ(X, E∗X)).

From the previous section we know that the former cohomology group is
isomorphic to the simplicial cohomology group of the manifold.

Example 5.4.2. We have yet another resolution for the previous constant
sheaf RX over a smooth manifold X.

Following [13], we make the construction for a constant sheaf GX over a
topological space X where G is an abelian group. Let Sp(U,G) be the
group of singular cochains in U ⊂ X with coefficients in G. That is

Sp(U,G) = HomZ(Sp(U,Z), G)

where Sp(U,Z) is the abelian group of integral singular chains of degree p in
U with the usual boundary map. Let

δ : Sp(U,G)→ Sp+1(U,G)

denote the corresponding coboundary operator.

We define the sheaf Sp(G) as the sheaf over X generated by the presheaf
which assigns to every open set U ⊂ X the previous abelian group Sp(U,G).
We also have an induced morphism of sheaves δ : Sp(G)→ Sp+1(G).

We consider an open subset U ⊂ X homeomorphic to the unit ball in the
euclidean space (we can do this since we are working with a topological
manifold). Then the sequence

...→ Sp−1(U,G)
δ−−→ Sp(U,G)

δ−−→ Sp+1(U,G)→ ...

is exact for p > 0, since ker δ/im δ is the classical cohomology for the unit
ball, which is zero for p > 0. Moreover since

ker(S0(U,G)
δ−→ S1(U,G)) ∼= G
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we have exactness at p = 0 as well.

Therefore the sequence

0→ G→ S0(G)
δ−→ S1(G)

δ−→ S2(G)→ ...→ Sm(G)→ ...

is a resolution of the constant sheaf.

We can also consider C∞ chains in X when X is a smooth manifold, that is,
linear combinations of maps f : ∆p → U where f is a C∞ mapping defined on
a neighbourhood of the standard p-simplex ∆p. The results above explained
still hold in this case, and therefore we also have a resolution by differentiable
cochains with coefficients in G, which we denote by

0→ G→ S∗∞(G).

Let us go back to X a smooth manifold and the constant sheaf RX over it.
We have now two resolutions of that sheaf, namely,

0→ RX → E∗X ,
0→ RX → S∗∞(R).

We are coing to give an explicit isomorphism of sheaves as in corollary 5.4.1.1
between

I : E∗X → S∗∞(R).

Consider, for any open subset U ⊂ X the homomorphisms

IU : E∗X(U)→ S∗∞(U,R)

which to every smooth form ω ∈ Ep(U) assign the p-cochain IU (ω) whose
action over a C∞-chain c is the following

IU (ω)(c) :=

∫
c
ω.

The commutation with the differential and coboundary operators follows
from Stoke’s theorem:

δIU (ω)(c) = IU (ω)(∂c) =

∫
∂c
ω =

∫
c
dω = Iu(dω)(c).

Therefore it is well defined on the homology groups of both complexes:

I : Hp(Γ(X, E∗X))→ Hp(S∗∞(X,R))
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It can be proved, though we will not give all the details, that the sheaves
Sp∞(RX) are soft for every p ≥ 0. To do so, one notices that S0

∞(R) is soft
since its sections are assignations, for each point of X (the singular 0-chains),
of a value of R. Therefore, if we consider a closed set S ⊂ X we can always
extend by zero. The rest of the sheaves Sp∞(R) are soft because they are
S0
∞-modules and a sheaf of modules over a soft sheaf of rings is a soft sheaf

(see lemma 3.16 of [13]).

Therefore, we have that the resolution

0→ RX → S∗∞(R)

is acyclic and thus, we have the isomorphisms

Hp(X,RX) ∼= Hp(S∗∞(X,R)), p ≥ 0.

The first conclusion we can obtain from that fact is the equivalence between
the simplicial and singular cohomologies of X with coefficients in R.

Additionally, combining this example with the previous, we have that the
following groups are isomorphic

Hp(S∗∞(X,R)) ∼= Hp(Γ(X, E∗X)), p ≥ 0.

What is more, we actually know that I induces such an isomorphism. Ap-
plying the corollary 5.4.1.1 to this situation

E∗X

0 RX

S∗∞(R)

I

where the morphism f indicated there is the identity, we conclude that the
morphism I is an isomorphism and therefore

I : Hp(Γ(X, E∗X))→ Hp(S∗∞(X,R))

is the isomorphism we were looking for.

What we have proved here is commonly know as de Rham’s Theorem.

Example 5.4.3. We come back to the case of complex manifolds. Analo-
gously to the resolution 5.3 we can obtain the following resolution for the
constant complex sheaf over a complex manifold X

0→ CX
i−→ Ω0

X
∂−−→ Ω1

X
∂−−→ ...

∂−−→ Ωn
X → 0. (5.4)
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The operator ∂ is the coboundary acting on the complex-valued differential
forms of type (p, q) in the following way

∂ : Ep,q(X)→ Ep+1,q(X).

We also have a coboundary operator ∂ which acts in the complementary way

∂ : Ep,q(X)→ Ep,q+1(X).

The exterior derivative, that is, the coboundary operator of the complex-
valued differential forms of degree r

ErX =
∑
p+q=r

Ep,qX

verifies d = ∂ + ∂.

In order to prove that the complex is a resolution, we must check that the
sequence is exact. We note that ∂ = d when acting on holomorphic forms
ω ∈ Ωp

X = Ep,0X , since these forms verify ∂ω = 0. With that, exactness at
Ω0
X is immediate, for the same reasons of the previous example.

For the following terms we also try to imitate the argument of the previous
example. Since

d2 = ∂2 + ∂
2

+ (∂∂ + ∂∂) = 0

we get that ∂2 = 0 and the sequence 5.4 is a complex as we stated before.
Therefore, we have

im(Ωp−1 ∂−→ Ωp) ⊂ ker(Ωp ∂−→ Ωp+1)

and we only have to check the other inclusion.

To do so, we would need some kind of generalisation of Poincaré’s Lemma
for the operators ∂ and ∂. This result was obtained by Dolbeault.

Theorem 5.4.3 (Dolbeault’s Lemma). Let U be a neighbourhood of 0 ∈
C and f ∈ Ep,qX (U) for q ≥ 1 such that ∂f = 0. Then, there exists a
neighbourhood V ⊂ U of 0 and a form g ∈ Ep,q−1

X (V ) such that ∂g = f on
V .

The proof of this lemma can be checked on page 28 of [19]. Following the
same arguments, we may conclude the same for the operator ∂. This lemma
gives us exactly what we want: if f ∈ Ωp

X(U) = Ep,0X (U) for p ≥ 1 such that
∂f = 0, that is, f ∈ ker(Ωp → Ωp+1) then there exists some g ∈ Ωp−1

X (V )
such that ∂g = f , that is, f ∈ im(Ωp−1 → Ωp) as we wanted.

There is actually another argument to prove that the sequence 5.4 is a reso-
lution. This can be consulted in proposition 7.1 of [21], page 54. The proof
there only involves formal integration
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Now, in order to apply the Abstract the de Rham theorem to conclude that
we can calculate the homology of the space from this complex of forms, we
would need the resolution to be acyclic. However, in this case this is not
as easily proved as in the previous example. The reason for this is that
there are no partitions of unity for holomorphic functions, and the sheaves
of holomorphic forms are not soft. Nevertheless, we have another way of
reaching the conclusion that we want, but we will need to review the theory
of coherent sheaves over Stein manifolds in order to obtain it.

5.5 Coherent sheaves

Let us begin with the definitions of the spaces over which we will be con-
structing the sheaves from now on. Let M be a complex analytic manifold,
that is, a manifold with an atlas with holomorphic transition functions. Let
OM be the sheaf of analytic functions on M .

Definition 5.5.1. We say that A ⊂M is an analytic subset or space ofM
if A is closed in M and if it is defined locally as the zero set of finitely many
holomorphic functions. That is, for every a ∈ A there is a neighbourhood
U ⊂ M of a and a set of holomorphic functions f1, ..., fs defined in U such
that

A ∩ U = {x ∈ A : f1(x) = ... = fs(x) = 0}.

Such a space has, in general, singularities. Let us see how to define the sheaf
of analytic functions over A.

Definition 5.5.2. The sheaf of ideals of A, denoted by IA is the subsheaf
of OM consisting of the germs of holomorphic functions on M that vanish
on A.

A stalk of that sheaf IA,x is the ideal of germs f ∈ OM,x which vanish in the
germ (A, x). Note that IA,x = OM,x if x /∈ A.

For every x ∈ A we let OA,x be the ring of germs of functions on (A, x)
which can be extended as germs of holomorphic functions on (M,x). Then
we have a surjective morphism OM,x → OA,x whose kernel is IA,x. Thus we
get

OA,x =
OM,x

IA,x
, ∀x ∈ A

or equivalently OA = OM
IA |A.

We can use analytic sets as a model for the construction of other spaces.

Definition 5.5.3. A complex space X is a locally Hausdorff space, count-
able at infinity, together with a sheaf OX of continuous functions on X which
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verify that there exists an open covering {Uλ} of X and for each λ a home-
omorphism Fλ : Uλ → Aλ onto an analytic set Aλ ⊂ Cnλ such that the
induced morphism of rings

F ∗λ : OAλ → OX |Uλ
g 7→ g ◦ F

is an isomorphism of rings. OX is called the structure sheaf of X.

Given the previous isomorphism, we define the holomorphic functions over
the complex spaceX as the functions of the structure sheaf OX . As we know,
we can define sheaves of modules over every topological space in general. In
the case of a complex space, the sheaves of modules over the structure sheaf
have a particular name.

Definition 5.5.4. A sheaf of OX -modules over a complex space is called an
analytic sheaf.

A very important kind of analytic sheaves are those being coherent. This will
be the case of the sheaves of ideals that we have just defined IX for X ⊂M
a complex subspace of a complex manifold M or the sheaves of holomorphic
forms Ω∗M . Coherent sheaves are nice to work with since the stalk at a point
x gives a lot of information about the sheaf in a small open neighbourhood
of x.

The definition for coherence can be introduced for sheaves in general, but
we are only interested in its application to analytic sheaves. Luckily, in this
case the definition can be simplified. That simplification relies heavily in the
following fact.

Theorem 5.5.1 (Oka). For any complex space X, the sheaf OX is coherent
in the following sense: for any open set U and any morphism of sheaves
α : OqX |U → OX |U we have a surjective isomorphism of the type

OpX |U → ker(α)|U → 0

for the kernel ker(α) of the morphism.

The proof of this very important theorem of complex analytic geometry can
be checked in section 6.3 of [2]. As we said, thanks to it we can introduce s
simplified definition of analytic coherent sheaves.

Definition 5.5.5. An analytic sheaf F on a complex space X is said to be
coherent if for each x ∈ X there is a neighbourhood U of x such that there
is an exact sequence of sheaves over U

OpX |U → O
q
X |U → F|U → 0

for some p and q.
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Now, let us delve into the idea of how in a coherent sheaf a stalk in a point
determines the sheaf in a neighbourhood of that point. Let X be a complex
space and OX its structure sheaf.

Theorem 5.5.2. Let F and G be coherent sheaves of OX-modules. Let
α : F → G be a map of OX-modules. Suppose that at some point x ∈ X the
map induced in the stalks

αx : Fx → Gx
is an isomorphism. Then, there exists an open neighbourhood U of x such
that for all points p ∈ U the maps of stalks

αp : Fp → Gp

are isomorphisms, that is, the sheaves F and G are isomorphic when re-
stricted to U .

This implies, for instance, that if F is a coherent sheaf, given f1, ..., fk ∈
F(U) which generate Fx for x ∈ U , we have that they are also generators of
Fy for every y ∈ V where V is a neighbourhood of x ∈ V ⊂ U .

The proof of this theorem is in section 6.2 of [2]. Let us check that the
sheaves of holomorphic forms Ω∗X over a complex manifold X are coherent.

Example 5.5.1. The sheaves of holomorphic forms over a complex manifold
are coherent because they are locally free OX modules and because the ring
of holomorphic functions OX over X is coherent.

A locally free sheaf (as introduced in sectio 5.2 )is a sheaf over a topological
space such that locally is isomorphic to a direct sum of copies of the structure
sheaf. That is, for every x ∈ X there exists a neighbourhood U ⊂ X of x
such that we have the following isomorphism of OX -modules

Ω∗X |U ∼= OX |⊕rU .

In the previous case, we say that the sheaf is locally free of rank r.

In the case of the holomorphic forms, it is very easy to verify that condi-
tion. Taking x ∈ X, we can consider a system of local complex coordinates
(z1, ..., zn) defined on a neighbourhood of U ⊂ X of x. In those coordinates,
we have that Ωp

X |U has as generators the following sections

dzi1 ∧ dzi2 ∧ ... ∧ dzip ∈ Ωp
X(U), for i1 < i2 < ... < ip.

Therefore, taking r =

(
p
n

)
we get what we wanted

Ωp
X |U ∼= OX |

⊕r
U , p ≥ 1.
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Lastly, from theorem 5.5.1 we know that OX is a coherent sheaf. We see
from definition 5.5.5 that, in the case of analytic sheaves, coherence is a local
property. That is, it suffices to see that for every x ∈ X there exists an open
neighbourhood U of x such that ΩX |U is coherent. It is not difficult to see
that the direct sum of coherent sheaves is coherent as well, and therefore,
using the isomorphism

Ωp
X |U ∼= OX |

⊕r
U

and the fact that OX is coherent, we get that Ωp
X |U is coherent, for every

p ≥ 1. For p = 0 we have directly Ω0
X
∼= OX , which is coherent as well.

5.6 Stein manifolds

Now, we introduce a particular type of complex manifolds: Stein manifolds
and, as a generalisation of those, Stein spaces. We are interested in these
spaces since the Milnor FibresXz, the spaceX, the diskD and the punctured
disk D∗ (these notations are defined in 1.1.1) are Stein manifolds. We follow
for this presentation the references [14] and [15].

Let us make this concept precise. There are four different possible definitions
for a Stein manifold, the equivalences between them being non-trivial theo-
rems. We will focus in a definition from Grauert in terms of the existence of
a plurisubharmonic function defined over the manifold with certain property.
We choose this definition since it is the easiest to handle in the cases we are
interested in. Consequently, we begin by introducing this kind of functions.

Let M be a complex manifold. We call d to the operator of exterior differen-
tiation of differential real-valued forms overM , which only uses the structure
of smooth manifold. Moreover, we define another operator which uses the
complex structure as well. This will be, for any ρ : M → R, the following
operator

dcρ := dρ ◦ J

with J the field of multiplications by i on the complex tangent bundle of the
manifold. In particular this operator verifies J2 = −IdTM .

Definition 5.6.1. A smooth real-valued function ρ : M → R is plurisub-
harmonic if

−ddcρ ≥ 0.

It is called strictly plurisubharmonic if one has the stronger inequality

−ddcρ > 0.

Let us understand correctly what those inequalities mean. We call

λ := −dcρ, ω := dλ.
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From the previous definition, we have that ρ is plurisubharmonic if and only
if ω ≥ 0. This last expression has a precise meaning.

Definition 5.6.2. A smooth-real valued differential 2-form ω onM is called
non-negative, written ω ≥ 0 (respectively positive, written ω > 0) if it is
J-invariant, that is

ω(J(u), J(v)) = ω(u, v)

for all tangent vectors u, v of M based at the same point and if

ω(v, J(v)) ≥ 0, (respectively ω(v, J(v)) > 0)

for all non-zero tangent vectors to M.

Example 5.6.1. A canonical example of a strictly smooth plurisubharmonic
function over Cn is the euclidean norm, that is

ρ : Cn → R, z 7→ ‖z‖2.

If we consider, for every complex coordinate, the real and imaginary parts
zj = xj + yj , we have that

dρ = 2(x1, y1, ..., xn, yn).

The expression for the operator J in the real coordinates is a diagonal matrix
of n blocks of the form (

0 −1
1 0

)
.

Therefore we have
λ = 2(y1,−x1, ..., yn,−xn)

and then the matrix of ω is the opposite of the matrix of J that we de-
scribed earlier, multiplied by a factor of 2. It is straightforward to check
that such a form is J-invariant in the sense that we established before and
that ω(v, J(v)) > 0 for every vector v ∈ Cn.

For every complex submanifold X ⊂ Cn, the restriction of the previous func-
tion ρ|X is still plurisubharmonic. This is due to the fact that the properties
of J-invariance an that ω(v, J(v)) > 0 are preserved when we restrict to
the complex tangent spaces TpM ⊂ Cn, for every p ∈ M . In general, with
the same argument, we can assert that given a plurisubharmonic function
f : X → R over a complex manifold X and a complex submanifold Y ⊂ X
we have that the restriction f |Y is plurisubharmonic.

Now, we are in the position to define Stein manifolds in terms of these kind
of functions.
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Definition 5.6.3. A complex manifold S is Stein if and only if there is a
strictly plurisubharmonic function ρ : S → R that is an exhaustion in the
sense that for every c ∈ R the sublevel set

{x ∈ S : ρ(x) < c}

is relatively compact in S, that is, its closure is a compact set.

With that definition and the plurisubharmonic function given by the restric-
tion of the euclidean norm, we see that every closed submanifold S ⊂ Cn is
Stein. Indeed, the closure of the sublevel set of the euclidean norm will be
a closed set of S, and since S is closed, we conclude that it is also a closed
set of Cn. Moreover, it is clearly bounded. Therefore, it is compact, as we
wanted. From this we conclude that the whole space Cn is a Stein manifold,
for instance. The closed balls Bρ of any radius ρ > 0, as closed complex
submanifolds of Cn are Stein manifolds as well.

Moreover, using the same arguments we might conclude that any closed
submanifold of a Stein manifold is a Stein as well. From that, we also get
that the Milnor fibres Xz are Stein.

Finally, using again the euclidean norm we can check with the same argu-
ments that the filled tube X, the disk D of radius ε > 0 and the punctured
disk D∗ are also Stein manifolds.

One of the great interests of Stein manifolds is that they they allow to state
Cartan’s Theorems A and B, which are some fundamental theorems in com-
plex geometry. They have a more general statement than the one we present
here.

Theorem 5.6.1 (Cartan’s Theorem A). Let X be a Stein manifold, and
F be a coherent sheaf on X. Then H0(X,F) generates Fx for all x ∈ X.

Theorem 5.6.2 (Cartan’s Theorem B). Let X be a Stein manifold, and
F be a coherent sheaf on X. Then Hp(X,F) = 0 for all p ≥ 1.

The proofs of these theorems might be checked on page 243 of [16].

Stein manifolds have very convenient properties. As one can read in [15], the
idea for these manifolds emerged of a general Oka principle, saying that on
Stein spaces there are only topological obstructions to solving holomorphic
problems that can be cohomologically formulated. As an application of this
idea, let us show that the cohomology bundle over the punctured disk D∗

must be analytically trivial, as we announced in section 4.4.2. For that, we
need the following theorem, extracted from [15].

Theorem 5.6.3. The holomorphic and topological classifications for prin-
cipal bundles over Stein manifolds coincide. This holds in particular for
complex vector bundles.
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Due to this theorem, we only nee to check that any vector bundle with
base space D∗ the punctured disk must be trivial. We observe that D∗ is
homotopic to S1, so that it suffices that we prove the same for this second
base space. It is easy to see that any complex vector bundle over S1 ⊂ C
must be the trivial bundle.

5.7 Computing the cohomology from the complex
of holomorphic forms

We finish applying everything that we have stated to prove that if X is a
Stein manifold then the cohomology groups H∗(X,C) are obtained as the
cohomology groups of the complex of holomorphic forms on X, denoted
by Ω∗X , and to give an expresion of the isomorphism between the singular
cohomology of X and the homology of that complex.

We know (see section 5.3) that the simplicial cohomology with complex co-
efficients is the same as the coholomogy of the constant complex sheaf. Ad-
ditionally, we have seen in the Abstract de Rham theorem (theorem 5.4.1)
that we can compute the cohomology of a sheaf from the cohomology groups
of an acyclic resolution of that sheaf. We have already studied a resolution of
the constant complex sheaf CX involving the complex of holomorphic forms
on X, namely, the resolution 5.4. Then, we only need to check that this res-
olution is acyclic. In example 5.5.1 we already justified that the sheaves of
holomorphic forms are coherent. Then, if X is a Stein manifold, we conclude
that the resolution is acyclic due to Cartan’s Theorem B (theorem 5.6.2).
Therefore, we arrive to the following conclusion.

Theorem 5.7.1. If X is a Stein manifold, the cohomology groups

Hp(Γ(X,Ω∗X)) ∼= Hp(X,CX)

are isomorphic for all p ≥ 0.

With that we can already claim that the (simplicial) cohomology of the fibres
can be computed from the cohomology groups of the complex of forms.

However, we want to establish an explicit isomorphism between the singular
cohomology (with complex coefficients) resolution

0→ CX → S∗∞(X,C) (5.5)

and the cohomology of the complex of forms (see example 5.4.3)

0→ CX → Ω∗X (5.6)

To do so, we reproduce the arguments of the example 5.4.2, that is, we apply
corollary 5.4.1.1.
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About the first resolution, with the reasoning explained in the example
5.4.1, we conclude that S0

∞(X,C) is soft, and consequently, all the sheaves
Sp∞(X,C) are soft as well.

Considering that holomorphic forms are in particular smooth complex-valued
forms, we can use a real parametrization of C to define the integral of a
holomorphic ω form over a cycle c ∈ X, which will result in a complex
number ∫

c
ω ∈ C.

About these integrals, we can ensure that they satisfy Stoke’s theorem. We
include a proof for that fact for completeness, since this was not covered in
any of the references consulted.

Theorem 5.7.2 (Stoke’s theorem for holomorphic functions). Given ω ∈
Ωp(X) a holomorphic form defined in X, and c a smooth p-chain on X, then
we have ∫

c
∂ω =

∫
∂c
ω.

Proof. Since ω ∈ Ωp(X) we have that the real and imaginary parts of the
form, that is

ω = Re(ω) + i Im(ω) = α+ iβ

are differential real valued forms α, β ∈ Ep(X).

Furthermore, since holomorphic forms verify ∂ω = 0 and we know that
d = ∂+∂, we have that the action of the exterior differential over holomorphic
forms is the same than the action of the operator ∂. Therefore, we can
conclude

∂ω = dω = dα+ i dβ.

Now, since we write the previous integral in terms of the real forms∫
c
∂ω =

∫
c
dα+ i dβ =

∫
c
dα+ i

∫
c
dβ.

Applying the Stoke’s Theorem in the last integrals, we get what we wanted.

With these preparations we are in the position to define the following homo-
morphism

Ip : Hp(Γ(X,Ω∗X))→ Hp(Sp∞(X,C)), [ω] 7→ Ip(ω)
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where the cochain Ip(ω) acts on any singular p-chain c of X as

Ip(ω)(c) :=

∫
c
ω ∈ C.

That morphism is well defined because the integrals verify the Stoke’s theo-
rem 5.7.2.

Then, again thanks to the corollary 5.4.1.1, and that the resolutions

Ω∗X

0 CX

S∗∞(C)

I

are acyclic we conclude that the homomorphisms Ip are actually isomor-
phisms.
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Chapter 6

Integrals of holomorphic forms
over cycles in the fibres

Let f : (Cn+1, 0) → (C, 0) be a germ of analytic function with an isolated
critical point at the origin and ω a holomorphic form defined in Cn+1. Given
a vanishing cycle ∆(z) in the fibre Xz (recall notations 1.1.1), in this chapter
we study how the integral ∫

∆(z)
ω|XZ

changes when z goes around the origin 0 ∈ C.

We will begin this study for n = 1 since some intuitions are easier to present
in that setting. However, all the arguments can be applied to the general
case as well. We will only formulate the results there.

This exposition follows chapter 10 of [3]. The first three sections here ex-
plained are based on the section 10.1 of that reference, and the last section of
this chapter sums up the main results obtained on the remaining of chapter
10 of [3].

6.1 Holomorphic dependence on parameters

Let us begin detailing constructing the integrals that we will study. Let f :
(C2, 0)→ (C, 0) be the germ of an analytic function with an isolated critical
point at the origin. Recall sections 1.1.1 and 2.1. We consider ω ∈ Ω1

C2

a holomorphic 1-form and choose a closed curve σ(z0) : [0, 1] → Xz0 in a
non-singular level line Xz0 , for example, a parametrization of a vanishing
cycle ∆.

Given γ : I → D∗ a path joining z and z0, we can extend the definition of
the previous closed curve to the fibre Xz using the trivializations which we
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described in section 2.1 along the path, that is, we define

σ(z) := hγ(σ(z0)).

The object that we want to study is thus

I(z) :=

∫
σ(z)

ω|Xz =

∫ 1

0
σ(z)∗(ω|Xz), z ∈ D∗.

An important remark about this setting is the following: the form ω ∈ Ω1
C2

when restricted to any fibreXz is closed. That happens because in a complex
curve there are no non-zero holomorphic 2-forms. This situation has two
consequences.

1. First, the integral I(z) does not change if we change σ(z) to an homol-
ogous curve σ′(z) in the fibre Xz. Two curves σ and σ′ are homologous
when they are in the same class of (singular) homology H1(Xz;Z),
that is, they verify that there exists a real 2-chain α on Xz such that
σ(z)− σ′(z) = ∂α. Therefore, by the Stoke’s theorem we have that∫
σ(z)

ω|Xz−
∫
σ′(z)

ω|Xz =

∫
σ(z)−σ′(z)

ω|Xz =

∫
∂α
ω|Xz =

∫
α
d(ω|Xz) = 0

so that ∫
σ(z)

ω|Xz =

∫
σ′(z)

ω|Xz

as we wanted.

2. The integral I(z) depends clearly on the homotopy type of the path γ
that we chose. If we have another path γ′ : I → D∗ joining z0 and z
homotopic to γ, we saw in section 2.1 that the operators hγ and hγ′

where homotopic. Therefore, the closed curves hγ(σ(z)) and hγ′(σ(z))
are homologous and, by the previous remark, the integral I(z) is the
same along any of them.

With these ideas in mind, we state the main theorem of the section.

Theorem 6.1.1. The integral I(z) is an analytic function of z, the value of
f over the fibre Xz, in the sense that for every z ∈ D∗ there exists U ⊂ D∗

a neighbourhood of z such that I|U : D∗ → C is an analytic function.

In general, this function will be a multi-valuate holomorphic function as we
will explain later.

To prove this theorem, we represent the integral I(z0) as another integral,
this time, of a meromorphic 2-form on a real surface.
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This 2-form will take the following expression

df ∧ ω
f − z0

and it will be defined in the following surface. We consider in D∗ a small
path γ going round z0 anticlockwise, and define the surface in X∗ formed by
the union of curves

Γ :=
⋃
z∈γ

σ(z).

We observe that the previous form is a holomorphic form over the path, since
we have excluded the fibre Xz0 from its definition.

We have the following lemma, which can be thought of as a generalisation
of Cauchy’s Integral formula. That is, it allows us to express the value of an
analytic function in a point z0 as an integral over the boundary of a small
disk ∂Dz0 centred at that point.

Lemma 6.1.1. We have the expression

I(z0) =
1

2πi

∫
Γ

df ∧ ω
f − z0

(6.1)

Observe that if we already knew that I(z) was analytic, then, applying
Cauchy’s Formula we would have

I(z0) =

∫
γ

I(z)

z − z0
dz =

∫
γ

∫
σ(z)

ω|Xz
z − z0

dz.

Therefore this equality is the one we look for in the following proof.

Proof. Let us prove the equality of the integrals. From the definition of Γ,
applying Fubini’s theorem we get that

1

2πi

∫
Γ

df ∧ ω
f − z0

=
1

2πi

∫
γ

(∫
σ(z)

ω|Xz

)
dz

z − z0
,

which equals the following expression

1

2πi

∫
γ

(∫
σ(z0)

ω|Xz0

)
dz

z − z0
+

1

2πi

∫
γ

(∫
σ(z)

ω|Xz −
∫
σ(z0)

ω|Xz0

)
dz

z − z0
.

Now, if we consider γ a circle of radius tending to zero, we get that the
second term of the previous sum also tends to zero. This happens because
we are integrating holomorphic forms, that is, the integrals are finite, and
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the dependence of z is continuous. Due to the independence of the path, we
conclude that this second integral must vanish. Therefore we have

1

2πi

∫
γ

(∫
σ(z0)

ω|Xz0

)
dz

z − z0
=

(∫
σ(z0)

ω|Xz0

)
1

2πi

∫
γ

dz

z − z0
= I(z0)

as we wanted.

Having proved that lemma, the theorem 6.1.1 follows, since the integral

1

2πi

∫
Γ

df ∧ ω
f − z0

depends analytically on z0.

Remark. With the theory we have developed, we are in the position to
describe explicitly some natural holomorphic sections of the coho-
mology bundle. Let ω ∈ Ω1(C2) be the holomorphic 1-form we had before,
and let {∆i(z) : i = 1, ..., µ} be sets of vanishing cycles generating the ho-
mology group H1(Xz,Z), where µ := µ(f, 0) is the Milnor number of the
singularity and depending continuously on z.

Recall the isomorphism from section 5.7 between the cohomology of the
complex of holomorphic forms and the singular cohomology of a Stein man-
ifold. The fibres Xz are Stein manifolds, and therefore, we can define the
isomorphisms

I : H1(Γ(Xz,Ω
∗
Xz))→ H1(Xz;C), [α] 7→ I(α)

such that the cochain I(α) acts on a 1-chain c of Xz in the following way

I(α)(c) =

∫
c
α.

The vanishing cycles generate the homology group H1(Xz;Z) and since

H1(Xz;C) = C⊗Z H1(Xz;Z)

we get that they are still generators for the complex homology. Additionally,
it is also true that

H1(Xz,C) = H1(Xz,C)∗.

Therefore, the expression of the cochain I(ω|Xz) in coordinates in the set of
generators dual to the vanishing cycles is

I(ω|Xz) =

(∫
∆1(z)

ω|Xz , ...,
∫

∆µ(z)
ω|Xz

)
.
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With that, and keeping in mind that the previous integrals are holomorphic
in z, we have proved that the correspondence

sω(z) : z 7→

(∫
∆1(z)

ω|Xz , ...,
∫

∆µ(z)
ω|Xz

)

defines a holomorphic section on the cohomology bundle, as we wanted.

What is more, this section is locally constant. If we fix z0 ∈ D∗ and
consider a connected neighbourhood U ⊂ D∗ of z0, we can find a path
γ : I → U joining z0 to any other point z ∈ U . Therefore, if we consider the
diffeomorphism hγ : Xz0 → Xz obtained as described in section 2.1, we have
that

I(z) =

∫
∆(z)

ω|Xz =

∫
h−1
γ ∆(z)

h∗γ(ω|Xz) =

∫
∆(z0)

ω|Xz0 = I(z0)

as we wanted. We saw in chapter 4 that these were the sections we were
interested in, since they described the holonomy of the cohomology bundle.

6.2 Branches of the integrals

In the previous chapter, we studied analyticity, which is local property of
the integrals

I(z) :=

∫
σ(z)

ω|Xz

for σ(z) a closed curve in the fibre Xz and ω ∈ Ω1
C2 .

The objective of this chapter is to study the global properties of our
integrals, which by analytic continuation along paths in D∗ end up being
multi-valued holomorphic functions.

We have seen in the previous section that, using the geometric monodromy
along a path γ : I → D∗ joining z0 and z, we can extend the definition of the
closed curve σ(z0) to a close curve σ(z) in Xz and therefore the definition
of I(z). Moreover, we saw that the homology class of the curve σ(z) defined
that way only depends on the homotopy class of the path γ we chose to
define the extension. Two homotopic paths with the same endpoints lead
to homologous curves in Xz, and therefore define the same value for the
integral I(z). In this way, we conclude that we can continue the definition of
the integral along paths in D∗ giving rise to a many-valued holomorphic
function in that domain.

What is more: from the way in which we defined the continuation of I we see
that the branching of this integral is defined by the monodromy of the
singularity. To each homotopy class of a closed path γ based on the point
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z0 corresponds an automorphism of the fibre Xz0 : the monodromy hγ that
we defined in section 2.1. If hγ∗ is the induced operator on the homology
group of the fibre H1(Xz0 ;Z) then the continuation of the integral along the
path γ equals by definition ∫

hγ∗[σ(z0)]
ω|Xz0

where [σ(z0)] is the homology class of σ(z0) (recall that the previous integrals
are defined up to the homology class of the closed curves).

6.3 Expansion of the integral in series

Since the integrals

I(z) :=

∫
σ(z)

ω|Xz

define a many-valued holomorphic function on D∗, each branch of this func-
tion in a neighbourhood of z ∈ D∗ can be expanded in a Taylor series. In
this section, we prove that in a neighbourhood of the critical value 0 ∈ C the
integral can be expanded as a series also. This will be a series in fractional
powers of z and the coefficients of the series will be polynomials in the loga-
rithm of z. As a consequence of the presence of those logarithms, the series
converges on sectors of that small neighbourhood of the critical value.

Let us formulate the theorem with precision. Let U be a neighbourhood of
0 ∈ C and in that neighbourhood let the following sector

S := {z ∈ U : a ≤ arg(z) ≤ b}.

For each z ∈ S we choose a basis

σ1(z), ..., σµ(z)

of the homology group H1(Xz;Z) continuously depending on z, where µ :=
µ(f, 0) is the Milnor number of the singularity. Let h∗ be the monodromy
operator on the homology groups corresponding to a path going round the
critical value anticlockwise.

Theorem 6.3.1. In the indicated sector, the vector function

I(z) =

(∫
σ1(z)

ω|Xz , ...,
∫
σµ(z)

ω|Xz

)
can be expanded in the series∑

α,k

ak,α z
α (ln z)k

verifying the following conditions.
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• The series converges if the modulus of z is sufficiently small.

• The coefficients ak,α are vectors in the space Cµ.

• The real parts of the numbers α are greater than some constant.

• Each number α verifies that exp(2πiα) is an eigenvalue of the operator
h∗.

• A coefficient ak,α is equal to zero if the Jordan form of h∗ does not
have a block of dimension k+ 1 or more associated with the eigenvalue
exp(2πiα).

The proof of the theorem is based on the following theorem which we will
not prove here. An explanation of the arguments used to prove it can be
found in page 277 of [3].

Theorem 6.3.2. In the previous setting, there exists a natural number N
for which the following inequality holds in the sector S∣∣∣∣∣

∫
σj(z)

ω|Xz

∣∣∣∣∣ ≤ const. · |z|−N , j = 1, ..., µ.

To apply the previous theorem in order to prove the theorem 6.3.1 we need
to take logarithms of a non-degenerate linear transformation, that is, we also
need to know the following lemma.

Lemma 6.3.1. Let A be a non-degenerate µ× µ matrix. Then there exists
a µ× µ matrix B for which

expB = A

where the exponentiation of the matrix is defined, as usual, via the Taylor
series

expB :=

∞∑
n=0

Bn

n!
.

Furthermore, we will also need to know the next fact. We say that a linear
operator is semisimple if the space on which it acts has a basis consisting of
eigenvector of the operator. We say that it is unipotent if all its eigenvalues
are equal to 1. For every non-degenerate linear operator M there exists
a unique pair of commuting operators: a semisimple operator Ms and a
unipotent oneMu, for whichM = MuMs, respectively called the semisimple
and unipotent parts of the operator.

Proof. First, we extend by continuity the basis {σi(z) : i = 1, ..., µ} that we
have for points z ∈ S in the sector to values of z with arbitrary argument.
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Having those basis defined, we can extend the definition of the vector func-
tion I(z) to a many-valued vector function holomorphic in a small punctured
neighbourhood of 0.

Let us call the matrix of the monodromy operator h∗ in the basis {σi(z) :
i = 1, ..., µ} by A, which is a non-degenerate matrix.

The cycles {σi(z) : i = 1, ..., µ} generate the homology group H1(Xz;Z) and
since

H1(Xz;C) = C⊗Z H1(Xz;Z)

we get that they are still generators for the complex homology. Additionally,
it is also true that

H1(Xz,C) = H1(Xz,C)∗.

Therefore, we can obtain a basis of the complex cohomology group dual to
the closed curves we have fixed.

Now, if we recall the isomorphism between the cohomology of the complex
of holomorphic forms and the singular cohomology of the fibre (section 5.7)
we realise that the vector function I(z) respresents the coordinates of the
class of the form [ω|Xz ] ∈ H1(Xz;C) on that dual basis.

The homomorphism h∗ induces another on the dual space, which has as
matrix the transpose AT . Therefore, we conclude that the vector function,
after going one round the critical value, changes in the following way

I(z) 7→ I(z) ·A.

We now consider in a punctured neighbourhood of the origin the many-valued
holomorphic matrix function given by

J(z) := exp

{
− ln(z) · ln(A)

2πi

}
,

where ln(A) is one of the possible values of the logarithm of the matrix A.

If we go round the critical value once, the value of z varies to z · exp{2πi}
and therefore, the function J(z) changes to

J(z · exp{2πi}) = exp

{
− ln(z · exp{2πi}) · ln(A)

2πi

}
= exp

{
− ln(z) · ln(A)

2πi
− ln(A)

}
= A−1J(z)

Therefore we have that the vector function

z 7→ I(z) · J(z)
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is a single-valued function in a punctured neighbourhood of zero. We prove
now that this function is meromorphic at zero. Due to the theorem 6.3.2 we
see that it is sufficient to prove that about the coordinates of the matrix J .

Thus, we focus on describing the elements of the matrix J . Given the de-
composition of A in its semisimple and unipotent parts, it is sufficient to
explain how to find the elements of J if A is diagonal of unipotent.

• If A is diagonal, then J is diagonal as well, and we can easily see that
the elements of its diagonal are powers of z. The exponents of those
powers are

α =
− ln(aii)

2πi

where aii are the elements on the diagonal of A.

• If A is unipotent then the elements of the matrix J(z) are polynomials
in ln(z), the degrees of the polynomials being less that the dimension
of the Jordan blocks.

Therefore, for arbitrary matrices A the function J(z) has the form of a finite
sum ∑

α

zα Pα(ln z).

In this sum, each number α verifies, as we said before, that exp{−2πiα} is
an eigenvalue of the matrix A. Moreover, for each α, Pα is a polynomial in
ln z with degree less that the maximum dimension of the Jordan blocks of
the matrix A associated to the eigenvalue exp{−2πiα}.

With that, we conclude that the coefficients of the matrix J(z) grow suffi-
ciently slowly. Therefore, the vector function I(z)·J(z) must be meromorphic
at 0 ∈ C. Consequently, it can be expanded in a Laurent series with a finite
number of negative exponents. Multiplying that series by J(z)−1 we obtain
the theorem 6.3.1.

6.4 General hypersurface singularities

The generalisation of the previous theory to a germ of holomorphic function
f : (Cn+1, 0) → (C, 0) with an isolated critical point at the origin is almost
straightforward. The details concerning this construction migh be revised in
the sections 10.2 and 10.3 of [3]. Here we will state the main results one can
find there, which are up to some point intuitive due to the theory we have
developed for curves. Let f : X → D be a good representative of the germ
and f∗ : X∗ → D∗ the Milnor fibration we are constantly working with.

For any holomorphic n-form ω ∈ Ωn
X , the integral of the form along the

classes of a basis {σi(z) : i = 1, ..., µ} of the homology groups Hn(Xz;Z)
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continuously varying with z defines a holomorphic many-valued function on
the punctured disk D∗. The branching of this function as z goes round 0 is
determined by the monodromy transformation of the homology.

The theorem analogous to theorem 6.3.1 in this context is the following.

Theorem 6.4.1. In each sector

S = {z ∈ D∗ : a ≤ arg z ≤ b}

the function

I(z) =

(∫
σ1(z)

ω|Xz , ...,
∫
σµ(z)

ω|Xz

)
can be extended in the series∑

α,k

ak,α z
α (ln z)k

which verifies the following properties.

• All the powers α are positive and are logarithms of the eigenvalues of
the classical monodromy operator divided by 2πi. That is, exp{2πiα}
is an eigenvalue of the monodromy.

• Each power k of the logarithms in the series is less than the maximum
size of the Jordan block of the classical monodromy operator associated
with the corresponding eigenvalue.

There is a slight generalisation of the previous result. To understand it, we
need the theory of Leray residues, in which we will not enter in depth. Let
us simply define those residues in the context of isolated singularities, state
an important property that they verify and conclude with the mentioned
generalisation. The exposition of this theory is based on section 3.1 of [20].
Some of the results are also found in the aforementioned sections of [3].

We have that X is a complex manifold of complex dimension n + 1, and
Xz for every z ∈ D∗ is a complex manifold of codimension 1 in X. Let
α ∈ Γ(X,Ωn+1

X ) be a meromorphic form with its poles lying on some fibreXz.
In that setting, we say that a holomorphic differential form ϕ ∈ Γ(Xz,Ω

n
Xz

)
is a residue of α if we can write

α = ϕ ∧ df
f

+ α′

where α′ ∈ Γ(X,Ωn+1
X ) is holomorphic as well. We denote that form by

ResXz(α) = ϕ|Xz .

Let us state the generalisation of lemma 6.1.1 which is verified by those
residues.
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Lemma 6.4.1. The integral of the residue of a form α ∈ Γ(X,Ωn+1
X ) over

some cycle σ ∈ Hn(Xz,Z) equals the following integral∫
σ

ResXz(α) =
1

2πi

∫
∆
α

where ∆ ⊂ X \ Xz is obtained replacing each point of δ by a small circle
encircling the fibre Xz in the positive direction. Observe that the second
integral is well defined because we excluded the fibre Xz were α had its poles.

With these ideas in mind, we have the following. Let ω ∈ Γ(X,Ωn+1
X ) be

a holomorphic form as usual. We fix z ∈ D∗ and consider the holomorphic
form on the fibre Xz given by the following residue

ηz := ResXz

(
ω

f − z

)
.

We also consider the integrals

I(z) :=

∫
σ(z)

ηz =
1

2πi

∫
∆(z)

ω

f − z′

where σ(z) ∈ Hn(Xz,Z). It is not difficult to convince oneself that we can
transport the cycles σ(z) to nearby fibres and therefore obtain a well-defined
holomorphic function in a neighbourhood of each z ∈ D∗.

The generalisation of theorem 6.3.1 which we mentioned is then stated for
these integrals.

Theorem 6.4.2. All the integrals of the form

I(z) :=

∫
σ(z)

ResXz

(
ω

f − z

)
in the previous setting can be expanded in each sector

S = {z ∈ D∗ : a ≤ arg z ≤ b}

in a series of the form ∑
α,k

ak,α z
α (ln z)k

which verifies the following properties.

• It converges in the modulus of z is sufficiently small.

• All the powers α verify −1 < α.

• Each number exp{2πiα} is an eigenvalue of the monodromy.

• The coefficients ak,α are equal to zero at any time that the classical
monodromy operator does not have Jordan blocks of dimension k + 1
or greater associated with the eigenvalue exp{2πiα}.
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