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Abstract

Topological data analysis (TDA) is a modern field at the intersection of algebraic topology,
statistics, and data science, focused on extracting meaningful insights from complex data where
shape and size matter. A central tool in TDA is persistent homology, which extends classical
homology to study topological features across multiple scales via filtrations. The resulting
algebraic object, the persistence module, is summarized through topological invariants such
as persistence barcodes, which record the lifespan of features in the data. In multiparameter
persistence, where filtrations are indexed by multiple parameters, the theory becomes more
intricate, motivating a rich line of recent research.

This thesis investigates persistent homology in both single- and multiparameter settings,
combining theoretical contributions with applications in data analysis and machine learning.
The work is organized into three parts.

The first part studies dualities in persistence. While persistent cohomology is well-understood
and leveraged for computational efficiency in the single-parameter case, it remains underde-
veloped in the multiparameter setting. We introduce a theoretical framework for dualities in
multiparameter persistence and implement a cohomology-based pipeline to match barcodes
from different data sources in the single-parameter case.

The second part focuses on functional invariants, which integrate more naturally into statistical
and machine learning workflows than barcodes. We prove stability results for the rank invariant
and establish a functional central limit theorem for the multiparameter persistence landscape,
enabling the construction of confidence bands.

The final part presents two machine learning applications. First, we use persistent homology
to estimate the intrinsic dimension of neural network training trajectories and relate it to
generalization. Second, we apply it to interpret model behavior under adversarial attacks on
large language models.
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Introduction

The explosive growth in both the volume and complexity of data across scientific domains
has brought renewed attention to a fundamental challenge in modern data analysis: how
to effectively extract and interpret the underlying structure of real-world datasets. One
particularly subtle yet powerful form of structure is shape. Capturing the observable shape in
data, or detecting its hidden shape, can often be key to understanding the phenomena under

exploration.

In some cases, it might happen that the geometric or topological properties of the object
of study play a central role in the analysis. For example, in medical imaging, the exter-
nal morphology and internal cavities of glioblastoma multiforme, a highly aggressive and
poorly understood brain tumor, have been shown to carry predictive value for clinical out-
comes |Cra+20]. Similarly, the process of protein folding, which transforms linear amino acid
sequences into intricate three-dimensional structures, is known to produce shapes that are
knotted while others are unknotted—a purely topological condition. This distinction correlates

with functional differences, having profound implications for biology [Ben+23].

However, shape can also play a subtler role. In contrast to the cases above, where we directly
study the morphology of an object; in other instances, the crucial information may instead
reside in the geometric or topological structure of the dataset itself—frequently hidden within
its high dimensionality. An interesting example is the conformation space of cyclo-octane,
where the relative positions of the molecule’s atoms theoretically occupy a 72-dimensional
space. Yet, due to the internal symmetries in the molecule and its physical constraints, the
relevant configurations lie on a lower-dimensional manifold that encodes meaningful structural
information [MW11].

Topological Data Analysis and Persistent Homology

Classical statistical tools, particularly linear methods, often fall short when it comes to

capturing these intricate notions of shape. In this thesis, we adopt an alternative perspective:
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topological data analysis, which offers a set of techniques rooted in algebraic topology and
homological algebra designed to detect and quantify the shape of data in a way that is robust
to noise and adaptable to diverse data modalities. Among these tools, in this thesis we focus

in one of the most established methods: persistent homology.

Persistent homology provides a framework to uncover multi-scale topological features in data,
such as components, loops, voids, and their higher-dimensional analogues; encoding them in
topological invariants. Arguably, the most well-known invariant is the persistence barcode, a
collection of bars reflecting the “lifetimes” of topological features in the data, in terms of scale.
Persistent homology has been successfully implemented across various disciplines: assessing
coverage in sensor networks [dGO07|, exploring the structural properties of proteins [Gam+14;
Kov+16; XLM18|, investigating the 3D folding of DNA [ESR16|, goal-directed path planning
in robotics |[BGK15]|, trajectory classification [PHR16| and estimating the energetic cost of
bipedal walking [VAB13], to name a few. These diverse applications underscore the flexibility
and power of persistent homology in addressing complex, shape-driven questions in data

analysis.

Persistent Homology: Current Challenges in Theory and Practice

The field of persistence, which encompasses the theory and applications of persistent homology,

is inherently multidisciplinary, a quality that is reflected throughout this thesis.

At one end of the spectrum lies the theoretical foundation of persistent homology. Its
construction is rooted in homological algebra and representation theory. Although persistent
homology was introduced in a very concrete scenario—studying the homology groups of a
growing family of topological spaces—the underlying structure has since been abstracted into
the more general notion of persistence modules. These can be viewed categorically, as functors
from a poset category to the category of vector spaces, or representation-theoretically, as
representations of quivers. This perspective will be exploited in the second chapter of the
thesis. The general definition of persistence modules includes the setting on multiparameter
persistence, an extension of the classical theory that allows to construct the families of
topological spaces above depending on more than one parameter. Multiparameter persistence

will be a recurring theme in this work.

From a more applied viewpoint, integrating persistent homology into data analysis and
statistical pipelines presents significant challenges. First, the space of persistence barcodes,
despite being amenable to statistical analysis, has a complicated geometry with undesirable
properties such as non-uniqueness of means or geodesics, hindering the development of rigorous
statistical theory. In addition, barcodes do not reside in Euclidean spaces, which most machine

learning models take as input, and thus cannot be directly implemented within these pipelines.
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Often, we need to take a pre-processing step known as wvectorization where we embed them
into a Hilbert space, potentially losing information. Finally, persistent homology suffers from
severe computational constraints, especially, when applied to high-dimensional data. All these

limitations serve as key motivations for several contributions presented in this thesis.

At the other end of the spectrum are applications that leverage persistent homology to yield
meaningful insights. In the last chapter of this thesis, we explore how persistent homology can
be applied to machine learning systems to deepen our understanding of artificial intelligence.
There has been an increasing trend within the artificial intelligence community to incorporate
tools from geometry and topology into modern learning models. One of the reasons to
advocate for the use of persistent homology in this context is that it is inherently well-suited
to investigate higher-order interactions, extending from pairwise interactions typical from
graph-like structures. In fact, a recent position paper [Pap-+24| underscores the need for

topological frameworks and highlights topology as the “new frontier for relational learning”.

Contributions and Structure of the Thesis

This thesis brings together five research contributions—three peer-reviewed publications, one
work accepted for publication and one preprint currently under review—with some additional
ongoing research, all organized into three thematic chapters. Each chapter explores a distinct
research question about persistent homology and its role in machine learning and data analysis.
The thesis begins with Chapter 1, an introductory exposition of the theory of persistent

homology intended for a general scientific audience.

In Chapter 2, we explore the role of dualities in persistent homology from a theoretical
and a practical perspective, with a focus on the work presented in [GMS24| and ongoing
unpublished research. Persistent homology naturally admits a dual mathematical formulation
known as persistent cohomology which has proven to be instrumental in practice. Perhaps
the most notable example is its use in Ripser [Bau2l|, the state-of-the-art software for
persistent homology computations, which achieves remarkable performance by leveraging
cohomological methods. Building on this foundation, our work in [GMS24]| introduces an
efficient methodology for comparing and matching topological signals across different datasets
using persistent cohomology. Specifically, we implemented a pipeline to match bars in
persistence barcodes, representing topological features of distinct point clouds, in a way
that respects geometric similarity. We released open-source software implementing this
methodology that dramatically accelerates the computations, reducing processing time from

days to just minutes using standard high-performance computing resources.

In Chapter 3, we address the challenge of integrating persistent homology into statistical

inference and machine learning by adopting functional summaries instead of the persistence
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barcode. This approach is central to my collaborative works [Wan+24| and [GMW25|, where
we also extend these tools to the more expressive framework of multiparameter persistence. In
[Wan+24| we studied the rank function, focusing on its stability and performance in real-data
settings. Here by stability, we mean a crucial property in topological data analysis that
describes the resilience of topological descriptors to noisy perturbations in the data. We
presented new stability results for rank functions and developed machine learning pipelines for
classification and prediction tasks using open-source biological data, showing an improvement
in performance when compared to non-topological approaches. In [GMW25| we instead
focused on the persistence landscape, another powerful functional invariant. We derived a
functional central limit theorem for multiparameter persistence landscapes, enabling the
construction of confidence bands. This work represents one of the first rigorous methodologies

for uncertainty quantification in multiparameter persistence.

Lastly, Chapter 4 presents two applications of persistent homology to data generated by
Al systems, focusing on two key areas: understanding generalization in neural networks and
advancing interpretability in large language models in adversarial settings. These contributions
are drawn from my joint first-authored works: [Tan+24] and [Fay+25|. In [Tan+ 24|, we
investigate the proposed link between the generalization gap of a network (the performance
drop from training to test data) and the fractal dimension (quantified using persistent
homology) of its optimization trajectory. Through rigorous statistical analysis and two
illustrative counterexamples, we found evidence that challenges the established theory. In
[Fay+25], we propose persistent homology as a tool to interpret latent space dynamics in
large language models under adversarial conditions, specifically backdoor fine-tuning and
prompt injection. Across six state-of-the-art large language models, we show that such attacks
consistently compress latent topologies suppressing fine-scale structure while amplifying coarse
features. These signatures are robust across model sizes, layers, and architectures, and align
with the progressive manifestation of adversarial behavior. Our results highlight persistent
homology as a scalable, model-agnostic interpretability tool that captures both global structure

and local nonlinear effects in large language model activations.

Impact Statement

The contributions of this thesis range from the development of practical tools to theoretical

insights, with relevance both to current applications and to ongoing interdisciplinary research.

On the practical side, two concrete outcomes are the open-source software tools we developed:
one for cycle matching (https://github.com/inesgare/interval-matching) and another
for computing confidence bands for persistence landscapes (https://github.com/inesgare/

bands-mph-1landscapes). These tools are freely available to the research community and have
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already been adopted in other studies. For instance, cycle matching was used in |[Eas+23| as a
dimensionality reduction technique to investigate structural changes in brain representations
from resting-state fMRIs; and in [MB24] to develop “cross matched prevalence images” via
subsampling techniques. These applications underscore the immediate relevance and versatility

of the software.

The potential of using topological representations of data for real-world applications is
sometimes limited by the scarce availability of statistical and inference methods. Our
contributions [Wan+24| and [GMW25]| directly address this gap. In them, we enable the
implementation of new methodologies and foster the integration of these summaries within
machine learning pipelines. In [Wan+24| we already presented two study-cases where using
rank functions yields an improvement in performance for clinical tasks such as enhancing
detection of stroke patients from electrocardiograms and refining the classification of malign
lung tumors. These are early examples, and the broader clinical impact of these methods

remains a promising avenue for future exploration.

Finally, this thesis aims to contribute to the growing dialogue between two traditionally
distinct communities: pure mathematicians (particularly topologists and algebraists) and
machine learning practitioners. By drawing on ideas from topology and geometry, this
work aligns with an emerging trend in machine learning that seeks to incorporate more
structured and theoretically grounded approaches into model design and analysis. This
cross-pollination of ideas has the potential to offer new perspectives and tools, helping to
improve the interpretability, robustness, and theoretical foundations of machine learning

systems, which I am keen on exploring in the next stages of my academic research career.
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1 Persistent Homology

We begin by introducing Persistent Homology (PH), the central technical tool of this thesis.
This introduction is aimed at non-specialists and assumes no prior knowledge of algebraic
topology. Only the material necessary to follow this thesis is covered, although pointers to

further reading and other references are included throughout the text.

This chapter follows the structure of the PH pipeline, depicted in Figure 1.1. We start
studying how to turn various types of input data into combinatorial /geometric representations
called filtrations (Section 1.1) and how to turn these representations into topological ones
using the theory of homology to get persistence modules (Section 1.2). We then cover different
types of topological invariants one can extract from these representations of data (Section 1.3
and Section 1.4); and close the chapter with an overview of a key property of PH called
stability (Section 1.5), which justifies its use in data analysis. For thorough introductions to
the theory of persistence, we refer to [EH10| or [Oud15].

Data Filtration Persistence Invariants Analysis
Module

Figure 1.1: Flowchart diagram of the PH pipeline.

1.1 Simplicial Complexes and Filtrations

In this section we introduce simplicial complexes and explain how to define them from various
types of input data. We use this definition to construct filtrations, the first step in the PH
pipeline in Figure 1.1. See [Ghrl4, Chapter 2| for further examples and details on these

constructions.

Simplicial Complexes. An abstract simplicial complex X over a discrete set (or point

cloud) S is a collection of subsets of S closed under inclusion: if o € X and 7 C o, then 7 € X.
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We can assign an orientation to X by fixing an order on the vertices, e.g., if S = {s1,...,s,},
we set §1 < 89 < -+ < 8,. A k-simplex is a subset of S with k£ + 1 elements, denoted
[Sigs Siys - - - S|, with induced orientation given by s;, < s;, < -+ < s;,. The set of all k-
simplices is denoted X, and the union of all simplices up to dimension k& forms the k-skeleton,
denoted X< == |J i<k X;j. The dimension of a complex is the largest dimension among its
simplices. A common example is given by graphs, 1-dimensional simplicial complexes presented

as G = (V, E), where V is the set of vertices (0-simplices) and E the set of edges (1-simplices).

Vietoris—Rips and Cech Complexes. There are several standard methods for constructing
simplicial complexes from input data. Given a point cloud S in a metric space with distance
d (also called a finite metric space) and a scale parameter € > 0, one common approach is to
define the Vietoris—Rips (VR) complex at scale €, denoted VR (S, d) or simply VR(S) when
the metric is clear from the context. This complex consists of all simplices whose vertices are

pairwise at most e apart, or more specifically,
VR(S,d) = {0 # 0o C S :diam(c) < ¢},

where diam(o) denotes the diameter of the simplex. The VR complex is straightforward
to define and can be recovered from the 1-skeleton, which is an advantage for storage
requirements, but its size can grow exponentially with the number of points: if |S| = n, then
[VR(S)| € O(2") (see Table 1 in [Ott+17]).

An alternative is the Cech complex at scale €, denoted C.(S,d) or C.(S). A simplex belongs
to the Cech complex if the closed balls of radius e centered at its vertices have a non-empty
common intersection. Despite this condition being stronger, the VR and Cech complexes have
similar complexity: if S is a subset of an Euclidean space, we have that C.(S) C VR.(S) C
C v2:(S). However, the Cech complex enjoys stronger theoretical guarantees. Notably, the
Nerve Theorem implies that, under suitable conditions (sufficiently dense sampling of a
manifold in an Euclidean space and an appropriate choice of €) the Cech complex recovers
the correct topological structure (i.e., it has the same homotopy type) of the underlying space

we are sampling from [NSWO08, Theorem 3.1].

Filtrations. The discussion above naturally leads to the question of how to choose appro-
priate values of € that recover meaningful topological features. Rather than selecting a single
scale, the theory of persistence considers all scales simultaneously by constructing filtrations.
A filtration is a family X, := {X; : t € T’} of simplicial complexes indexed by a partially
ordered set (T, <), such that X; C X whenever ¢t < s. In this framework, the VR and Cech
complexes give rise to the VR filtration VR4(S) = {VR.(S) : € € [0,00)} and the Cech
filtration Co(S) := {Cc(S) : € € [0,00)}. As the scale parameter € increases, the conditions for

16



including simplices become more permissive, ensuring that the complexes grow monotonically.
This monotonicity guarantees that the inclusion condition in the definition of a filtration is
satisfied. An illustration of a VR filtration over a point cloud in R? at four values of the

parameter € can be found in Figure 1.2.

e =0.00 e =040 e =0.80 e =120
“ ® . ”® . ﬁ’s A
o’ . “" . ) o /./:. e ’ 0% .§% ¢ 3
. * % .: ¢ % ?.b. %
L 1) - '. ¢ v
[ ] [ ] \ /.
Do D ¢ D o
. o o ./o ° \./070

Figure 1.2: VR filtration at four values of the filtration parameter ¢ € [0,00). VR
complexes for e = 0, 0.4, 0.8, and 1.2, with the corresponding balls of radius r = €/2, on a
discrete set of 30 points in R? sampled over two circles with Gaussian noise added. Note
that for e = 0.8 the VR complex captures the two circles (or loops) intuitively present in the
sample.

Multifiltrations. Recent applications have motivated the integration of multiple parameters
into the construction of filtrations, leading to the concept of multifiltrations. This extension
arises either from the desire to better handle outliers by incorporating measures such as point
density, or from specific application domains where additional parameters naturally play a
role in the analysis. We present two extensions of the VR filtration that address these needs

by incorporating an extra parameter alongside the scale parameter e.

The first is the function-Rips bifiltration, which requires a function v : S — R defined on the
point cloud. This bifiltration is constructed by taking the VR complexes over the sublevel
sets of v, that is FRy (S,7) = {VR (v '(—00,t]) : t € R, e € [0,00)}. An analogous
construction can be defined using superlevel sets 7 1[t,00). A common choice for v in this
context is a density estimator on the point cloud, which assigns higher values to points in
dense regions and lower values to potential outliers. When such a density function is used,
the resulting filtration is often referred to as the density-Rips bifiltration, see Figure 1.3 for

an illustrative example.

A potential drawback of this approach is its reliance on user-defined parameters, such as the
number of neighbors in k-Nearest Neighbors (k-NN) estimation, or a bandwidth parameter for
Kernel Density Estimation (KDE), which must be carefully tuned. To address this, a parameter-
free alternative is provided by the degree-Rips bifiltration defined for t € N and € € [0, 00) as
DR, (S) = the maximal subcomplex of VR(S) with vertices of degree at least t—1, where

the degree of a vertex refers to the number of incident edges. This construction filters
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simplices based on local connectivity without requiring additional parameter tuning. For

further examples and definitions of multifiltrations, we refer the reader to [BL23, Chapter 5].
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Figure 1.3: Density-Rips bifiltration at 4 x 4 values of the filtration parameters
€ € [0,00) and density € R. Sample of N = 100 points, 60 sampled from circle of radius 1
with Gaussian noise of scale 0.1 added, and 40 outliers sampled from the uniform distribution
over the square [—1.5, 1.5]2. The density function is computed using a Gaussian KDE:
(s) = = SV K(*7*), with bandwidth h = 0.4, where K is a Gaussian distribution with
zero mean and unit variance. Balls and points are colored by the value of this function. Note
that, thanks to filtering out by density, the bifiltration captures the loop from the circle in
the upper right region of the parameter space.

A Category-Theoretical Perspective. We close the section with a unifying, category-
theoretical definition of filtration that encompasses all the examples above. Given a partially
ordered set (also called a poset) (T, <), we can view it as a small category T, where the

objects are the elements of T', and there is a unique morphism s — ¢t whenever s < t.

Definition 1.1.1 (Filtration). A filtration is a functor X, : T — Simp, where Simp denotes
the category of simplicial complexes. Under the action of this functor, each morphism s <t

in T corresponds to the inclusion Xo(s <1t): X; — X;.
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For a poset (T, <), its opposite poset (T, <,,) has the same set of objects T" but opposite
order, i.e. s <o, t <= t < s. We denote the corresponding category as T°P.

1.2 Homology, Cohomology, and Persistence Modules

We now introduce the theory of homology and cohomology, both in the absolute and relative
settings, and define the central object of study in the theory of persistence: the persistence

module.

Simplicial Homology. Given a d-dimensional simplicial complex X, the kth chain group
is the vector space over a fixed field k spanned by the k-simplices of X: Cy(X,k) = span{c €
Xk}, 0 < k < d. When the field is clear from the context, we simply write Ci(X). These
chain groups are connected by boundary operators 0 : Cy(X) — Ci_1(X), defined on basis

elements as

k
ak([SiO, e Slk]) = Z(—l)][&m, c. ,gz‘;, . 7Sik]7

J=0

where 5;; indicates that the vertex s;, is omitted. These definitions yield a chain complex
0= Cy(X) 24 Oy (X) = - — C1(X) L5 Cy(X) — 0,

with the fundamental property 0 0041 = 0. That is, im(Jg11) C ker(d). Elements of ker(0)

are called cycles, and those in im(0g11), boundaries.

Definition 1.2.1 (Homology groups). Let £ > 0 and X be a simplicial complex. The kth
homology group is defined as the quotient

ker(@k)

(1.2.1)

This group represents cycles modulo boundaries, which encode the topological features of X:
connected components (k = 0), loops or tunnels (k = 1), cavities or bubbles (k = 2), and
higher-dimensional analogues for £ > 2. The dimensions of these vector spaces, called the
Betti numbers, (X)) := dim Hy(X) precisely count the number of these topological features.
Although here we have introduced the theory of simplicial homology, these notions can be
defined for general topological spaces using the framework of singular homology, and it turns
out that both theories agree in triangulable spaces. Some illustrative examples of homology

groups of common manifolds can be found in Table 1.1.
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Table 1.1: Homology for £ =0, 1 and 2 for the circle, the 2-sphere and the torus.
Each manifold has a single connected component, reflected in their identical 0-homology.
The circle, being 1-dimensional, has one non-trivial loop and no 2-dimensional cavities. The
2-sphere has no non-trivial loops, as all loops can be contracted to a point, resulting in trivial
1-homology. However, it does enclose a 2-dimensional cavity. The torus has two independent,
non-contractible loops (latitudinal and longitudinal) and also encloses a cavity, as shown in
its homology.

Circle (Sh) Sphere (S?) Torus (T)

Ho(SY) =R Ho(S?) =R Ho(T) =R
0-th homology B(;(Sl) _ 52(82) _1 BE(T) —1
H (SY) =R Hi(S?) =0 H,(T) = R?
1-st homology 61(81) 1 ﬁll(S2) —0 511(’[[‘) —9
Hy(S') =0 Hy(S?) =R Hy(T) =R
2-nd homology 522(81) —0 52(82) —1 52@) 1

Simplicial Cohomology. The previous construction can be dualized to define cochain
groups C*(X k) = Homy(Cy(X),k), where again, when clear from the context, we just
write C*(X). We analogously have coboundary maps 6% : C*~1(X) — C*(X), defined as

6k f(o) == f(Oo), forming a cochain complex
0 CUX) &8 01 (X) - OYX) & COX) 0

where 65t o §% = 0.

Definition 1.2.2 (Cohomology groups). Let £ > 0 and X be a simplicial complex. The
kth cohomology group is defined as the quotient

_ ker ok+1

H*(X) = i (1.2.2)

In our context, working over a field k, the spaces H*(X) and Hy(X) turn out to be dual
vector spaces thanks to the Universal Coefficient Theorem [Hat02, Theorem 3.2|. If they are

finite-dimensional, we additionally know that they must be isomorphic.
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Relative Homology and Cohomology. Another construction that will be important in

what follows is that of relative homology (and cohomology). The idea is that, if we have a
_ Ge(X)
o CIZ(A)'
Since the boundary operator in Ci(X) restricted to Cy(A) lands in Cj_1(A), it induces a

relative boundary operator (‘3,;4’)( c Cp(X, A) = Cr_1(X, A), satistying 8,‘3_’f o 8,;4’X =0.

pair of simplicial complexes A C X, we can define the relative chain group Cy(X, A) :

Definition 1.2.3. Let £ > 0 and A C X be simplicial complexes. The kth-relative homology

group is defined as
ker i} X

im 7
It represents the cycles in X up to boundaries in A. The construction for cohomology is

analogous, obtained by dualizing the process above.

More Cathegory Theory in Persistence. The homology and cohomology constructions
above are functorial, defining functors Hy(—), H*(—) : Simp — Vecy from the category of
simplicial complexes to the category of vector spaces over k. Functoriality ensures that maps
between complexes induce linear maps between the corresponding homology or cohomology
groups, preserving the identity and preserving (for homology) or reversing (for cohomology)
the composition of functions. Applying homology to a filtration of simplicial complexes X, =
{X; :t € T}, gives rise to a persistence module: a family of vector spaces {Hy(X;) : t € T'}
with linear maps Hy(s < t) : Hi(Xs) — Hp(X}), for s < ¢t in T, induced by the inclusions

X; C X,. These linear maps are typically called internal or transition maps.

Definition 1.2.4 (Persistence Module). A persistence module is as a functor M : T — Vecy
from the small category defined by the indexing poset (T, <) to the category of vector spaces
over k. If we restrict to the category of finite-dimensional vector spaces, vecy, we obtain

point-wise finite-dimensional (p.f.d.) persistence modules.

We drop the mention of the field, and simply write Vec or vec when it is clear from the context.
We will usually denote the vector spaces in the module as M; = M(t), and the transition
maps as M7 = M(s < t) for s,t € T, s < t. If the indexing set (T, <) is totally ordered,
meaning that any two elements in T" are comparable, as it happens when 7' is a subset of the
real line (R, <), the result is a single-parameter persistence module. In contrast, modules
indexed by posets with incomparable elements, such as (R™, <), where < is the product order

induced by the total order in R, are called multiparameter persistence modules.

Definition 1.2.5 (Tame persistence module, Definition 1.12. [Oud15]). A persistence
module M : T — Vecy is tame (also called g-tame) if for any s <t € T (i.e., s <t and s # t)

we have rank M} < oc.
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Note that every p.f.d. module is also tame, but the opposite might not hold, as in a tame

module M we are allowing the rank of M/ = id,,, to be infinite for any ¢ € T

Persistence modules form an abelian category denoted by Vec', where morphisms between
M, N € Vec" are given by natural transformations ¢ : M — N, consisting of a family of
linear maps ¢; : My — N; which are required to commute with the internal maps: for s <¢,

they yield the commutative diagram

MS M(sgt! Mt

o] &2

N(s<t
s t:

Kernels, cokernels, direct sums and products in Vec' are defined point-wise, inherited from

the corresponding constructions in Vec.

Given a poset (T, <), certain distinguished subposets play a central role in the definition of
persistence modules. For r,t € T with r < t, the closed segment (or rectangle) between r and
t is defined as

rt]={seT:r<s<t}.

If r <t (ie,r <tandr#t), the open rectangle is defined as
(rit) ={seT:r<s<t}.

Similarly, one defines the half-open rectangles [r,t) and (r,t]. In discrete posets, it is enough
to consider closed rectangles; in contrast, for continuous posets such as R", the distinction

between open, closed, and half-open rectangles becomes non-trivial and important.

We also define the upset from some t € T' as
[t,o0) ={se€T:s>t}

and the downset as
(—oo,t] ={seT:s<t}.

Given some vector space U and r <t € T, we denote by Uj,.; the persistence module such

that

U, ifr<s<t,
(Utra), = (1.2.3)

0, otherwise;

and with internal maps being the identity between any two points in the closed rectangle,

and the zero map otherwise. We can analogously define the modules Uy, ), Ut o) and Ui_ooy
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supported in the open segment, the upset and the downset, respectively.

1.3 Barcodes

In this section, we introduce the most established invariant of the PH pipeline: the persistence
barcode. First, we recall the mathematical result that sustains it, the Structure Theorem. We

then say a few words about computations of barcodes, and highlight some of its limitations.

The Structure Theorem and the Persistence Barcode. A persistence module M :
T — Vec is indecomposable if every direct sum decomposition M = A @ B with A, B € Vec'
implies A = 0 or B = 0. The Structure Theorem [see Theorem 4.2 in BL23, for a more

precise statement| guarantees that any p.f.d. module M € vec” admits a decomposition into

M =P M

€T

indecomposable summands

and that this decomposition is essentially unique. For finite posets, this result is standard in
the theory of representations of finitely presented algebras. In the generality here presented,
the ezistence of the decomposition follows from work of Crawley-Boevey [Cra94|, and a
short proof was given by Botnan and Crawley-Boevey in [BC20]; the uniqueness of the
decomposition follows from the Krull-Remak—Schmidt—Azumaya theorem [Azu50]. In more
detail, Azumaya proved that any two decompositions of a module in indecomposable modules
whose endomorphism ring is completely primary must be the same up to reordering. A ring is
completely primary if the sum of two non-regular elements is always non-regular, or in other
words, if the set of all its zero-divisors forms an additive group. We will use this condition in

the proof of Lemma 2.6.2.

Let (T, <) be a poset. An interval I C T is a convex and connected subposet, that is, for
any three elements r < s <t of T if r, t € I then s € I (converity) and for any s, ¢t € I there
exists a chain of pairwise comparable elements connecting them (connectivity). As expected,
when T = R with the total order, these are precisely the intervals of the real line, which

coincide with the closed, open and half-open segments defined earlier.

Given a convex subposet I C T an indicator module supported on [ is a persistence module
kr : T — Vec such that k;(¢) =k if ¢ € I and zero otherwise, the transition maps being the
identity within I and zero otherwise. The convexity condition ensures that composition of
internal maps is well-defined. When [ is an interval, we call k; an interval module. These
modules are indecomposable, and when T' = R with the total order, the Structure Theorem

strengthens to assert that every p.f.d. persistence module decomposes (essentially uniquely)
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into a direct sum of interval modules [Cral5, Theorem 1.1]. This result justifies the following

definition.

Definition 1.3.1 (Persistence barcode). The persistence barcode of a module M € vec®,
denoted PB(M), is given by the multiset of intervals appearing in the decomposition from

the Structure Theorem.

Remark 1.3.2 (Undecorated barcodes and tame persistence modules). The Structure
Theorem is established for p.f.d. modules. In contrast, a ¢g-tame module (Definition 1.2.5)
need not be interval decomposable. Nevertheless, one can still associate barcodes to such
modules by adopting a coarser notion: undecorated barcodes |Cha+16, §1.6], where we only
record the endpoints of the intervals and ignore whether they are closed, open or half-open.
We follow here the constructions in [BL15, §7.1] and [Oud15, Chapter 1, §2] to define these
undecorated barcodes for ¢-tame modules, equivalent to an alternative approach in [Cha+16].
Although a g¢-tame module M € Vec® might not be interval decomposable, we can define
its radical submodule rad(M) as rad(M) (t) = )., im M7, which is not p.f.d. in general
but is interval decomposable [CCd16, Corollary 36] In addition, it makes the quotient
module N := M/rad(M) ephemeral, meaning that for all s < ¢, we have rank N! = 0. This
means that every g-tame module is interval decomposable “modulo” some ephemeral modules.
Following that intuition, the barcode of a ¢g-tame module is defined as the undecorated barcode
of its radical, which coincides with the undecorated barcode of M in case that M is also
interval decomposable [BL15, Proposition 7.2]. Chazal, Crawley-Boevey and de Silva [CCd16]
formalized this approach considering the observable category of persistence modules, given by
the g-tame modules modulo ephemeral modules, in the sense of Serre’s theory of localization.
In this category, when the modules are parameterized over the real line, the interval modules
Ko, Koty Kpspy and ks defined over different intervals with same end points turn out to
be isomorphic, every g-tame module is indecomposable, and the undecorated barcode is a
complete invariant. Following the typical convention in TDA, in this work the term persistence
barcode of a persistence module M € Vec® refers to its undecorated barcode, which is typically

written using half-open intervals:

PB(M) = {[bz,dl) 11 € I, M= @iGIk[bi,di)} . (131)

When M = Hg(X,) for some filtration X, : R — Simp and some k > 0, each interval in the
barcode in Equation (1.3.1) corresponds to a topological feature in the filtration, which is
born (appears) at b; and dies (diappears) at d;, persisting over the interval [b;, d;). The length
p; = d; — b; is called its persistence, and long bars are typically interpreted as meaningful
topological features of the data, while short bars are often attributed to noise. The term
“persistence” is often also use to refer to the field that studies the properties of persistence

modules and PH. Our intended meaning when using this word in this thesis (whether referring
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to the length of a bar or to the field itself) should be clear from the context.

There is an alternative, equivalent representation of barcodes, which we introduce next.

Definition 1.3.3 (Persistence diagram). The persistence diagram of a module M € vec®,

denoted PD(M), is defined as the collection of points in the region of R? above the diagonal
Q = {(z,y) € R? : z < y}, where each point (b,d) € PD(M) corresponds to a bar [b,d) €
PB(M) in the barcode, counted with its multiplicity of appearance, and all the points in the
diagonal 9 = {(x,y) € R? : & = y} are considered with infinite multiplicity.

An illustrative example of a barcode and corresponding diagram, computed from the VR

filtration in Figure 1.2, can be found in Figure 1.4.

i e 00
]
4 1.1 A
<
= o
— )
e A
— 0.5 +
— — Hp o H,
_-== | Hl 00 i ] H1
T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 00 05 1.0 1.5
€ Birth
(a) Persistence Barcode (b) Persistence Diagram

Figure 1.4: Persistence Barcode and Persistence Diagram of the VR filtration
over the sample S of points in Figure 1.2. Recall that each bar [b,d) in the barcode
corresponds to a point (b, d) in the diagram. Ho(VR(S)) in blue and Hy(VR(S)) in red. The
vertical lines in the barcode mark the filtration values ¢ = 0.4, 0.8, 1.2, corresponding to
the stages shown in Figure 1.2. Note that there is one long Hy bar, corresponding to the
connected component that persists throughout the filtration; and two persistent H; bars,
corresponding to the two circles that we appreciate in the point cloud. At e = 0.4, only
Hy-bars appear, indicating disconnected components with no loops. At € = 0.8, the long
Ho-bar remains, and two Hi-bar emerge from the loops formed by the circles in the point
cloud. By € = 1.2, the smaller of these loops is filled in by triangles, leaving one Hyp-bar and
one Hi-bar corresponding to the bigger circle in the filtration.

Computing Barcodes. The most basic algorithm for computing the persistence barcode
of a finite filtration {X; : 1 <i < N} was first introduced for coefficients in k = Fy in [ELZ02]
and later generalized to arbitrary fields in [ZC05|. The procedure is as follows.

1. We first define the boundary matriz, which is the matrix representation of the boundary

map 0 : C(Xy) = C(Xn), where C(Xn) = @ocpdim(xy) Cr(Xn), with respect to
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the standard basis given by the simplices of Xy. In this matrix, rows and columns
correspond to simplices, ordered first by dimension and then by their appearance in the
filtration.

2. For each column, we define its pivot as the index of the lowest (in terms of height)

non-zero element in the column.

3. Next, we perform column-wise Gaussian elimination from left to right in the matrix.
For each column, we check if the row corresponding to its pivot only has zeros to the
left of the selected column. If that is not the case, we perform column operations with
the non-zero columns to the left, decreasing the value of our pivot, and check again. We

repeat this process until we satisfy the initial condition.

4. This algorithm yields the reduced matriz from which the barcode can be directly read.

This naive algorithm poses computational problems, mainly, that its complexity equals the
number of simplices in the filtration, and that storing the boundary matrix requires significant
memory. There has been extensive research to address these issues and optimize persistent
homology computations to make them widely accessible and applicable to real-world data.
Here we focus on the clearing algorithm by Chen and Kerber [CK11]|, which is key for the
implementation of Ripser [Bau2l|, the state-of-the-art code for barcode computations and
key ingredient of one of the projects o this thesis. The key observation brought forward by
Chen and Kerber [CK11] is that some columns in the reduced matrix must be null after the
reduction and do not play a role in the Gaussian elimination process. The clearing algorithm
reduces the boundary matrix in blocks by dimension from right to left so that it becomes
possible to detect beforehand these null columns and set them directly to 0. Consequently, it
is possible to avoid reducing these columns and accelerate the computation. This is already
an improvement compared to the standard reduction algorithm. However, this improvement
is burdened by the large number of columns in the first block that must be reduced in the
boundary matrix. One of the main contributions of Ripser [Bau21] is noting that the real
increase in speed appears when considering the relative coboundary matrix in which this first

block is significantly smaller.

The fact that computing cohomology instead of homology induces a speed-up in computations
was already foreshadowed by de Silva et al. [SMV11], who established that the persistence
barcodes of the four standard persistence modules of a filtration X, = {X; : 1 < i < N},

defined by their absolute homology and cohomology, and relative homology and cohomology
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as

Hy(X,) H,(X1) — ... = Hiy(Xn_1) — Hp(Xy), (1.3.2)
H*(X,) : H*(X)) — o HM(Xn) «— HA(Xy), (1.3.3)
Hy(Xn, Xo) : Hy(Xy) = Hp(Xn, X1) = ... = Hp(Xy, Xn_1), (1.3.4)
HY( Xy, X)) : HY(Xy) & HY( Xy, X)) « ... < HY(Xn, Xn_1); (1.3.5)

had equivalent barcodes. In more detail, de Silva et al. [SMV11] proved the following.
Proposition 1.3.4 (Proposition 2.3 and Proposition 2.4, [SMV11]). Let X = {X;:1<i <

N} be a filtration of finite-dimensional simplicial complezes. For all k > 0, we have
PB(H(X.)) = PB(HY(X.)).

In addition, if PB(—)' denotes the finite intervals in the barcode and PB(—)* the infinite

intervals, we also have
PB(H,(X,))! = PB(H;1(Xn, X)), and PB(HL(X,))™ = PB(Hi(Xy, X,))™;

where the second equality must be understood as a bijection [a,00) <> [—00, a).

Limitations of Barcodes. Barcodes have been the most widely used, and thus successful,
topological invariant stemming from the PH pipeline. However, they also present certain
drawbacks and limitations that have inspired some of the work in this thesis. First, although
the space of barcodes equipped with a suitable metric (see Section 1.5) is complete and
separable, which makes it amenable to probability and statistics [MMH11], its underlying
geometry is complicated. Specifically, it constitutes an Alexandrov space with curvature
bounded from below, where Fréchet means are not unique [Tur+14|. This complexity presents
significant challenges for the full development of statistical theory for barcodes and for their

integration in Machine Learning (ML) methodologies.

In the literature, two main strategies have emerged to address this issue. One approach adapts
and extends statistical and ML methods to work directly within the space of barcodes despite
its geometric complications, e.g. |[Fas+14; Rei+15; Hof+17]. The other approach involves
embedding barcodes into spaces with more favorable statistical properties, such as Euclidean
or Hilbert spaces. This process is known as vectorization. In Section 1.4 we introduce in
detail one such vectorization, called the persistence landscape [Bubl5], and provide a brief

overview and references for other methods.

A second major limitation of barcodes is that they do not naturally extend to the theory of

multiparameter persistence [CZ09|. This difficulty stems from the representation theory of
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modules over arbitrary posets, where the indecomposables need not be interval modules, or
even indicator modules. As a result, research in multiparameter persistence in recent years
has focused on developing new invariants that are sufficiently discriminative, computationally

efficient, and suitable for data analysis. We discuss some of these developments in Section 1.4.

1.4 Beyond Barcodes: Further Invariants

In this section we introduce two functional invariants that are of great importance in some
sections of this thesis: the rank function (or rank invariant in multiparameter persistence) and
the persistence landscape. As functional summaries, they live in a vector space amenable to
statistical analysis. We conclude the section with a brief overview of other relevant invariants

not explored in depth in this thesis but important to the theory of persistence.

Rank Functions. Given that a persistence module consists of a family of vector spaces
connected by linear maps, a natural quantity to consider to define invariants is the rank of

these transition maps.

Definition 1.4.1 (Rank function). For a persistence module M € Vec®, the rank function
is defined as the map rk™ : R x R — Z where

rank M (x < if v <y,
kM (x,y) = (@<y) =Y (1.4.1)

0 otherwise.

This definition naturally extends to multiparameter persistence modules M € Vec® by
considering the ranks of maps M (x < y) between comparable pairs x, y € R™. In this context,
rank functions are typically called rank invariants, and were indeed the topological invariant
first proposed to study multiparameter persistence when barcodes were proved to be unfruitful
[CZ09]. When the persistence module is a PH module H;(X,) of a filtration X, € Simp™",
these ranks are often denoted as 5, = rank Hy(x < 'y) and called persistent Betti numbers
[ELZ02]|, drawing connections to the definition of Betti numbers in the theory of homology.
These should not be confused with multigraded Betti numbers, which we will introduce in

Section 2.6.2, and which are also relevant invariants in multiparameter persistence.

PH is rooted in various constructions, but potentially the most relevant one is size theory,
which in fact predates the definition of PH modules and barcodes. A primitive version of
the rank function for Hy was first introduced by Frosini in the 1990s as the size function, a
tool for computer vision and pattern recognition in shape analysis [Fro90; Fro92b; Fro92a;

Ver-+93|. Size functions were algebraically reinterpreted as formal series by Landi and Frosini

28



[LF97; LF99; FL99|, using a construction based their discontinuities which reappeared in the
definition of persistence diagrams introduced in the 2000s [CEH05; Cha+09]. This definition
was not based on the Structure Theorem, but on using an inclusion-exclusion formula involving
the persistent Betti numbers. Instead, here we have presented persistence diagrams directly
through their equivalence to barcodes. Several pseudometrics were also introduced for size
functions |[LF97|, which later found counterparts in metrics for persistence barcodes and
diagrams. In Section 1.5, we discuss some potential reasons why barcodes and diagrams

prevailed over size and rank functions, and the gaps addressed in this thesis in this direction.

Persistence Landscapes. In single-parameter persistence, rank functions are discontinuous
integer-valued functions over R2. As functions, they live in a vector space which can be
endowed with the LP(R?) norm for 1 < p < oo, providing for p = 2 a Hilbert space
structure (cf. Equation (1.5.6)). This is already an improvement to develop statistical
theory and ML methods with respect o barcodes, whose geometry was far more complicated
and impossibilitated direct integration with ML. Persistence landscapes are piecewise-linear
functions built from the rank functions that further simplify them, reducing the dimensionality
and making them more manageable, while preserving their functional nature to develop
statistical theory. Persistence landscapes in single-parameter persistence were first introduced
by Bubenik [Bub15| and then extended to multiparameter persistence by Vipond [Vip20];

here we directly introduce the latter definition, which encompasses the former.

Definition 1.4.2 (Multiparameter persistence landscapes). For a persistence module

M e Vec™" | its persistence landscape is the function A : N x R” — R such that

A(m, x) = sup{e > 0: B2 > m for all h > 0 with ||h_ <€} (1.4.2)

Intuitively, the persistence landscape measures the maximal radius (in the ¢ metric of R™)
over which m features in the module persist in all directions at x € R"™. This gives a family of
non-negative functions \(m,x) > 0 which are 1-Lipschitz in x € R"™ [Vip20, Lemma 20]. See
Figure 1.5 for an illustrative example of a persistence diagram 1.5a, and its corresponding

rank function 1.5b and persistence landscape 1.5¢c .

Other Invariants. There are additional vectorization techniques alternative to the per-
sistence landscape for single parameter persistence such as the persistent entropy [Chi+15;
Ruc+16; AGS20|, Betti curves, silhouettes |Cha+14b|, persistence kernels |Rei+15] or persis-
tence images [Ada+17], to name a few. We refer to [Ali+23] for a survey and benchmarking
of methods. On the other hand, the lack of a complete invariant analogue to the persistence
barcode in the setting of multiparameter persistence has motivated extensive research to

define new incomplete invariants that are interpretable and computationally feasible for real
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Figure 1.5: Rank function (b) and persistence landscape (c) for a given persistence
diagram (a). Observe that the landscapes A(1,z) and A\(2,x) can be obtained from the
rank function by projecting the diagonal onto the z-axis and tracing the outline of the
outermost boundaries of the collection of triangles that define the rank function, and the
second outermost boundaries, respectively. See [Bubl15, §2.3| for more details.

data. We now provide a non-comprehensive list of methods. Some proposals capitalize the
algebraic structure of persistence modules, which can be seen as modules over a certain
algebra, to adapt and use the invariants in that setting. This includes minimal presentations
and multigraded Betti numbers [LW15; LW22|, or multigraded associated primes and local
cohomology [Har+19|, for instance. An alternative due to Patel [Pat18| leverages the original
definition of persistence diagrams using an inclusion-exclusion formula on the rank function
[CEHO05; Cha+09] to define generalized persistence diagrams. Kim and Mémoli [KM21]
introduced the generalized rank invariant and showed that this is the counterpart to the
generalized persistence diagram of Patel, extending and generalizing the previous formulation.
Using resolutions and rank-exact structures Botnan et al. [BOO22| have introduced signed
barcodes and signed rank decompositions, which have been vectorized seeing them as measures
for seamless integration within ML methods by Loiseaux et al. [Loi+24|. Finally, similarly
to persistence landscapes, other vectorization methods can be extended to multiparameter
persistence, such as the multiparameter persistence kernel |Cor+19| or the multiparameter

persistence image [CB20).

1.5 Metrics and Stability

Stability is a fundamental concept in TDA, supporting the idea that topological invariants—
such as barcodes, rank functions, and persistence landscapes—provide faithful representations
of input data. Intuitively, stability ensures that small changes in the input lead to only small
changes in the resulting invariants, making them robust to noise. This notion is formalized

mathematically through bounds that relate distances between input data to distances between
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their corresponding invariants. In this section, we review key metrics and stability results in
the theory of persistence. Later, in Chapter 3, we will present new stability bounds for rank

functions established as part of this thesis.

Barcodes and Persistence Diagrams. We first introduce arguably the most relevant

metric in the space of persistence barcodes or diagrams.

Definition 1.5.1 (Bottleneck distance). The bottleneck distance between two persistence
diagrams PD; and PD, is defined as

dg(PD{,PDs) = inf S - 1.5.1
5(PDy 2) ¢:P1311n—>PD2 xeggl |z — ¢(2)l ( )
where |||, is the ¢ norm on R? and ¢ ranges over all bijections between PD; and PD;
(recall that all points in the diagonal are included in the persistence diagram with infinite

multiplicity, so we can map points in PD; to the diagonal in PD,).

This metric is relevant in persistence because it underpinned the first stability result in the
literature [CEHO05; CEHO7|. In their work, Cohen-Steiner et al. considered continuous tame
functions f : X — R defined on triangulable spaces.! They showed that the map sending
each of function f to the corresponding persistence diagram PD(f) arising from the PH of the
sublevel-set filtration X; = f~(—o0,t], for t € R, is 1-Lipschitz with respect to the bottleneck
distance for diagrams and the L> metric for functions. That is, if f and ¢ are tame functions,
the inequality dg(PD(f),PD(g)) < ||f — g||,, holds.

The bottleneck distance can be generalized to a broader family of metrics known as Wasserstein

distances by replacing the ¢*° norm and the supremum in its definition.

Definition 1.5.2 ((p, ¢)-Wasserstein distance). For two persistence diagrams PD; and

PD, and parameters 1 < p,q < oo, the (p, q)- Wasserstein distance is defined as

1/p
W, ,(PDy,PDy) = inf (Z \|x—¢(x)\|§> (1.5.2)

.PD,—PD
¢FD1 > \zePD,

where ||-||, denotes the 7 norm on R? and again ¢ ranges over all bijections between PD; and
PDs.

In practice, it is common to assume p = ¢ and refer simply to the p- Wasserstein distance,

denoted W,. We will follow this convention throughout this thesis.

LA function f : X — R is tame if there is a finite number of values a € R such that for some k& > 0 and all
sufficiently small € > 0, the map Hy(f~!(—o0,a — €]) = Hy(f~1(—00,a + €]) is not an isomorphism; and for
all t € R and k > 0, the homology groups Hy,(f~!(—o0,t]) are finite-dimensional.

31



Wasserstein metrics give a more accurate notion of proximity, particularly for lower values
of p. In a number of practical applications, they are preferred to the bottleneck distance
precisely for this reason [BW20; GH10; Gid17; Ham+22|. However, their stability properties
have remained less well-known until very recently, when Skraba and Turner [ST21] established

the following stability theorem.

Theorem 1.5.3 (Cellular Wasserstein Stability Theorem, [ST21]). Let f, g : X — R be
monotone functions, i.e. f(o) < f(1) whenever o C 7, defined on a finite CW complex X .

Then, the following inequality
W,(PD(f),PD(g)) < |If —4ll,

holds, where PD(f) refers to the persistence diagram obtained from the homology of the sublevel
set filtration.

Persistence Modules. The stability theorem by Cohen-Steiner et al. [CEH05; CEHOT]
is only defined for continuous tame functions over triangulable spaces. This limitation is
overcome by the algebraic stability theorem by Chazal et al. [Cha+09], where the authors

worked directly at the level of persistence modules and introduced the interleaving distance.

Definition 1.5.4 (e-interleaving). Let M, N € Vec' be two persistence modules and
e > 0. An e-interleaving is given by two families of maps ¢; : M(t) — N(t + €) and
oy N(t) — M(t + €), indexed by the elements in the poset t € T, such that the following

diagrams for s <t € T" commute

M(s+¢e) —— M(t+e)

S\ \ S/ e

N(s+¢) —— N(t+e),

where the horizontal maps are the internal maps of the persistence modules. In other words,
¢ and ¢ define natural transformations between the functors M and N translated by €; and
N and M translated by e, respectively. In addition, the maps {¢; : t € T} and {p; : t € T}

need to make the following diagrams commute for all ¢t € T’

Mt

M (t) k. s M(t + 2¢), M(t +€)
Ny > T
Nt 2e
N(t+e) N(t) s » N (t + 2¢).

We say that two modules are e-interleaved if there exist an e-interleaving between them for

some € > 0.
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Definition 1.5.5 (Interleaving distance). For M, N € Vec', the interleaving distance is
defined as
di(M,N) =inf{e > 0: M and N are e-interleaved} (1.5.3)

and d;(M, N) = oo if there is no possible interleaving between M and N.

This is an extended pseudometric in the space of persistence modules up to isomorphism,
as there are modules that are not isomorphic for which their interleaving distance is 0. For
instance, taking M to be a trivial persistence module over R, that is M (z) = 0 for all z € R,
and N the module such that N(z) = 0 for all x # 0 and N(0) = k, we have that the

interleaving distance between the two is 0 but they are clearly not isomorphic.

The algebraic stability theorem establishes that if two persistence modules M, N € Vec' are
e-interleaved, then the bottleneck distance between their persistence diagrams is bounded
from above by € > 0; or equivalently, dg(PD(M),PD(N)) < d;(M, N). The isometry theorem
[Les15, Theorem 3.4] establishes the converse inequality for single-parameter persistence,
allowing us to conclude that dg(PD(M),PD(N)) = d;(M, N).

Multiparameter Persistence. The interleaving distance is formulated in terms of general
posets and directly applies to multiparameter persistence. It has been one of the most widely
used metrics in this setting, as it enjoys good theoretical properties. From a computational
perspective, the interleaving distance in known to be NP-hard to compute [BBK20] except
when it reduces to the bottleneck distance thanks to the isometry theorem. Note that, on
the contrary, checking for O-interleavings between two ¢-tame modules, which is equivalent to

looking for isomorphisms, can be solved in polynomial time [BLOS|.

The extension of the bottleneck and Wasserstein metrics, with a combinatorial nature amenable
to computations, from single- to multiparameter persistence is an active area of research.
For interval decomposable modules we can use partial matchings [BL15| between the sets of

intervals to achieve this extension.

Definition 1.5.6 (Multiparameter bottleneck distance, [Bak21]| and Multiparameter
Wasserstein distance, [BSS23]). Let M, N € Vec™" be interval decomposable modules, that
is, M 2 P,.;ky, and N = P, kg, with {J; : j € J} and {Kj}, : k € K} multisets of

intervals. Then, the bottleneck distance between them is defined as

dp(M,N) = inf max | sup di(ky, kg,), sup dr(ky;,0), sup d;(0,kg,) (1.5.4)
¢k o(i)=k eI\ keK\G(Z)
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and the Wasserstein distance between them is defined as
1/p

W,(M,N) —¢1Ir£ Z dr(ky, ki,)” + > di(ky, 0P + > d, kg, )P
JEINT keK\$(T

(1.5.5)

where ¢ ranges over all partial matchings, i.e. injections of subsets Z C J into K.

Rank Functions and Persistence Landscapes. As functional summaries, both rank
functions and persistence landscapes are endowed with LP metrics. For a module M € Vec® ",

its corresponding rank invariant can be seen as a function k™ : R?" — R.

Definition 1.5.7 (L? metric for rank invariants). For M, N € Vec®" persistente modules,

the L? metric between their corresponding rank invariants rk and rk” is defined as
1/p
dpp (k™ rkN) = [|rkM — V| = (/ ek — rkM}pdu) (1.5.6)
R2n
where p is the Lebesgue measure in R?",

Under this metric, two rank functions might have infinite distance (for instance in single
parameter persistence when we have infinite cycles at distinct birth times in M and N). This
is not a problem when we work with filtrations where the last stage is a simplicial complex
with trivial homology, as all homology classes must disappear at some point, and there are no

infinite cycles.

An alternative metric for rank functions, which we include for completeness but which will
not be the focus of this thesis, is the matching distance [dFL06; dFL10].

Definition 1.5.8 (Matching distance, Definition 6.11, [BL23]). For M, N € Vec®" persis-
tence modules, the matching distance between their rank invariants rk™ and rk” is defined
as

Anaten (T, 1K) = sup dp(PB(My), PB(N.))

where L : R — R” varies in the set of lines in L(t) = vt 4+ b such that v € [1,00)™ and b € R".
The modules M, N; € Vec® denote the single-parameter persistence modules obtained after
restricting M and N to L.
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2 Dualities in Persistence and Fast

Cycle Matching Computations

In this chapter, we explore the role of dualities in PH from a practical perspective—in order
to compute barcode matchings in an efficient way—and a theoretical one. Part of content of
this chapter can be found in my joint published work [GMS24].

We begin the chapter motivating the importance of dualities in persistence in Section 2.1. We
then introduce the problem of cycle matching in Section 2.2 and overview previous literature
relevant to our approach in Section 2.3 and Section 2.4. We cover our cohomological cycle
matching and the contributions in [GMS24] in Section 2.5. The chapter is closed with some
observations stemming from unpublished, ongoing research that explores the role of dualities

in multiparameter persistence in Section 2.6.

2.1 The Relevance of Dualities in the Theory of Persis-

tence

In this section, we go over over some of the unique characteristics of cohomology that make it
an interesting theory in itself, and review how these have been implemented to advance the
theory of persistence. Recall that in Section 1.2 we saw that homology (Definition 1.2.1)
and cohomology groups (Definition 1.2.2) with coefficients over a field like R are dual vector
spaces thanks to the Universal Coefficient Theorem. Additionally, when they have finite

dimension, they are isomorphic.

In general, even taking coefficients over an abelian group, the dualizing step required to
define cohomology makes it contravariant instead of covariant, that is, if f : X — Y is
a simplicial map, the induced linear map at the level of cohomology reverses the source
and target H*(f) : H*(Y) — H*(X) by sending ¢ + @ o f; and it reverses compositions,
H*(g o f) = H*(f) o H*(g) for any two simplicial maps f : X — Y and g : Y — Z. This
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characteristic turns out to add some extra structure that makes cohomology richer and

interesting in itself, for reasons that include the following.

e We can define a product ~: H(X) x H/(X) — H**(X) which turns the cohomology
group H(X) := Uy>o H*(X) into a ring that distinguishes topological spaces with the

same homology groups.

e Brown’s Representability Theorem [Bro62| establishes a one-to-one correspondence
between homotopy classes of maps f : X — K(G,n) from some topological space X to
the Eilenber-MacLane space K(G,n) [EM45b] and cocycles in the reduced cohomology
group H*(X, G).

e Some contexts, such as de Rham cohomology, are more naturally formulated in the

cohomology setting.

This rich structure has been instrumental in the theory of persistence. Potentially one of the
most notable observations is that cohomology can be used to accelerate PH computations
[SMV11; dMV11]| a strategy that has been applied in most of the state-of-the-art packages
[Bau+17; Bau21; BS23; BLL23|, as we have already discussed. The cup product has been
used to define finer invariants in single-parameter persistence [Con+22; MSZ24; DR24] and
appears as well in the adaptation of Steenrod modules to persistence [LMT22|. Finally,
Brown’s Representability Theorem has found applications in persistence as a theoretical
justification to develop circular coordinates [dMV11; Blu+24|, spherical coordinates [SS24]
and toroidal coordinates [Sco+23; PST23| from point cloud data. All these applications justify
the inherent interest on understanding well persistent cohomology, instead of approaching it

as an afterthought of homology.

In general, not only referring to homology and cohomology, we can define the following duality

on persistence modules over T and T°P.

Definition 2.1.1 (Duality functor). We define the duality functor connecting the categories
vec” and vec™™ as
Dt = Homy(—, k) : vec" — vec'". (2.1.1)

We drop the dependence on the poset when it is unambiguous.
In more detail, for an object M € vec' the dual object DM € vec™ is the functor such that

o for t € T, returns DM, := Homy(M,, k) the dual vector space;

e for each morphism s <,, ¢, assigns the dual of the internal map ¢’ from M, to M,
namely (¢%)Y : Homy (M, k) — Homy (M;, k) with u +— u o ¢!, which is well defined as
t <s.
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In Section 2.6 we will study the properties and some consequences of applying this functor

to general persistence modules.

2.2 Cycle Matching: Motivation of the Problem

In Section 1.3 we introduced persistence barcodes, and observed that, when computed from
the PH modules Hy(X,), £ > 0, of a filtration X, : T — Simp such as the VR filtration, they
encode information about the multiscale topological features of the input data. Each bar
in the barcode corresponds to a topological feature in the data (see Figure 1.4). A natural
question that arises is whether we can establish a correspondence between the bars in the
barcodes of two different input data sets that exhibit similar topological structure, so that

the matched bars represent resembling features.

A motivating example can be found Figure 2.1, showing four slices of a stack of images of the
posterior lateral line primordium (pLLP) of a zebrafish embryo. This is a primitive expression
of the lateral line, an organ in fish that regulates the way that they perceive the water flow
over their bodies to coordinate their swimming. At embryonic stage, the pLLP appears as a
cluster of roughly spherical cells. As the organ is scanned across its height, we can observe
the changing contours of these cells in the image slices. The question here is whether we can
define a matching between the 1-bars in the persistence barcodes of these images to effectively

“track” the evolving cell contours across slices, as the cells are imaged at varying heights.

Figure 2.1: Four slices from a stack of images of the posterior lateral line primordium of a
zebrafish embryo, from data set with image ID 9836972 provided by [Har+20].

There have been various attempts to answer this question in the literature, of which we now
provide a brief overview. Yoon et al. [YGG23| proposed the methods of persistent extension
and analogous bars to match signals from input data residing in potentially different spaces,
using only a dissimilarity measure between them. This is particularly useful when the data
that we want to match cannot be embedded into a common space in a meaningful way. Bauer
and Lesnick [BL15] defined a partial matching between bars of barcodes from a known map
between the persistence modules. This method was further developed by Gonzalez-Diaz et

al. [GST23], who proposed a basis-free method for partial matchings between barcodes using
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the block function, also defined from the morphism between the persistence modules. In
addition, the matching in [BL15| was reinterpreted in statistical terms by Reani and Bobrowski
[RB23|, who introduced a matching based on image persistence [Coh+09]. In our project, we

focused on this last approach.

A common limitation of the proposals above is that they are all very expensive to compute.
Our initial aim for this project was to leverage the strategy followed by Ripser [Bau2l|, the
state-of-the-art package to compute Vietoris—Rips barcodes, to accelerate the computations
of the cycle matching proposed by Reani and Bobrowski. This entailed extending the
correspondences between barcodes derived in [SMV11] to the setting of image persistence,
to be able to compute their barcode from the relative cohomology setting, as Ripser does.
However, just some months after we had started working on this, a paper came out providing

a solution to this problem, which we present next.

2.3 Functorial Dualities in Single-Parameter Persistence

and Lifespan Functors

In [BS23], Bauer and Schmahl developed a functorial generalization of Proposition 1.3.4
by [SMV11]. In Section 2.3.1, we provide the necessary background to understand this
categorical formulation, and in Section 2.3.2, we review the lifespan functors defined in

[BS23] and the functorial generalization of Proposition 1.3.4.

2.3.1 Category Theory Preliminaries

Limits and Colimits. Let T be the category associated to a poset (T, <). For a T-shaped
diagram M : T — C in an abelian category C, a generalized limit is given by an object L € C
and a family of morphisms u; : L — M; commuting with the internal maps of M, which
satisfy the following universal condition: for any other pair (V v, : V' — M;) as above, there

exists a unique morphism ¢ : V' — L such that the following diagram commutes

v
¢
Vs < Ut
L
M, MM

In other words, the limit is a terminal object in the category of pairs (C, (v;)ier) with

v, : C — M,; commuting with the internal maps, also called the category of cones of M.
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Limits are unique up to isomorphism, so that it makes sense to talk about the limit of a given

diagram, and denote it by limt M.

Dually, we can define the notion of a generalized colimit as an object C' € C and a family of
morphisms u; : M; — C' commuting with the internal maps of M, satisfying the following
universal property: for (f/, 0y : My — V') as above, there exists a unique morphism ¢ : C' — 1%

such that the following diagram commutes

> Mt-

This is an initial object in the category of cocones, and again, it is uniquely defined up to
isomorphism, so we can talk about the colimit of a given diagram and denote it by colimt M.

We can see the limit and the colimit as functors lim, colimt : CT — C.

In the category of persistence modules, Vec', limits and colimits always exist and can be
computed in the following way. For M € Vec', we have that its colimit is given by the

quotient
@teT M,

~Y

colimr M = (2.3.1)

where my € M, and m; € M, are related by the equivalence relation mg ~ my, if and only if
s <t and M} (ms) = m;. On the other hand, the limit of M is given by

limt M = {(m¢)iet : My = M7 (myg), Vs < t} (2.3.2)

which is a subspace of the product vector space €, . M;.

Adjunctions. Given a pair of covariant functors L : C — C" and R : C' — C, we say that
they are adjoint, denoted by L - R, if for any pair A € Obj(C) and B € Obj(C’) there is a
natural isomorphism between Home/ (L(A), B) = Home(A, R(B)). We also say that L is a
left adjoint of R, or that there is an adjunction between C and C' whenever such L and R
exist. Given such an adjunction, it is easy to check that L is right exact and R is left exact.
In addition, each adjunction L 4 R comes with two natural transformations n :ide — Ro L

and € : L o R — id¢s, called the unit and the counit, respectively.

As an example, let A : C — CT be the diagonal functor, sending some object U to the diagram
AU such that (AU); = U for all ¢t € T" and with all internal maps being the identity map
Uf =idy for s <t. It turns out that the colimit and the limit are precisely the left and right
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adjoints of this functor, that is,

colimt 4 A - limt.

This directly gives that colimt : CT — C is a right exact functor and limt : CT — C is a left

exact functor. The question of their exactness is more subtle.

2.3.2 Lifespan Functors and Dualities

Recall the adjunctions colimt 4 A - limt. Taking the unit of the leftmost adjunction,
n : ider — A o colimt and the counit of the rightmost one € : A o limt — ider and
evaluating at some M € CT we obtain natural transformations 7y, : M — A (colimt M) and
ey A (limp) — M, which are prescribed by the maps between M and the colimit, and the

limit and M, respectively. Putting everything together we arrive to the diagram
Alimt M 25 M 24 A colimy M,

that allows the following definition.

Definition 2.3.1 (Lifespan functors, Definition 3.1., [BS23|). We define the following
functors CT — CT.

The mortal part functor is defined as (=)' = kern_).

[e.9]

The immortal part functor is defined as (—)> = imn._).

The nascent part functor is defined as (—)* = coker ¢(_).

The ancient part functor is defined as (—)™>° = ime(_).

These functors give rise, for each M € CT, to the following natural diagram with short exact

T
M_Oo/ \M

sequences in the diagonals

The definition of the lifespan functors involves images, kernels and cokernels of the unit and
the counit, but there are two combinations that have not been used: cokern_ and ker e _.
These do not yield subobjects or quotients of the original persistence module we apply them
to, but still play a role in [BS23|.

Definition 2.3.2 (Definition 3.7., [BS23]). We define the following functors CT — CT.
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o The ghost complement is defined as (=) = kere(_).

e The unborn complement is defined as (—)* = cokern_.

Ezxample 2.3.3. Let T = {a,b} with a < b. Using Equation (2.3.1) and Equation (2.3.2) to
compute the colimit and the limit of the three diagrams in the first row, and looking at the

kernels, images and cokernels of their maps, we obtain the results in Table 2.1.

Table 2.1: Some examples of the lifespan functors.

M k-0 kSk 0-k
colimt M 0 k k

limt M k k 0

Mt k=0 0—=0 0—=0
M 0—-0 k—k 0—k
M~ 0—-0 0—=0 0—k
M= k—-0 k—>k 0—0
MP 00—k 0—-0 0—0
M- 0—-0 0—-0 k—0

Looking at Table 2.1 we can understand the reasoning behind the naming of the lifespan
functors. Intuitively, the mortal part (—)' is meant to capture intervals (indecomposables in
single-parameter persistence) that go to 0 (die) at some parameter value within the module.
The immortal part (—)*, on the contrary, captures the components that persist until the end
of the parameter set. Dually, the nascent part (—)*, isolates the indecomposables that are
born at some point, and the ancient part (—)~°°, the ones that existed at the beginning of
the module. The ghost complement (—)> tracks intervals that have died after they disappear,

and the unborn complement (—), the components that have not been born yet.

We now state the functorial version of Proposition 1.3.4 given in [BS23] which relates
the barcodes of the absolute and relative settings. It requires a technical condition on the
filtrations that they consider, X, € Simp', namely, that they are colimit proper. This means

that the natural maps
COliIIlT Hk(X.) — Hk(colim-r X.) and Hk(colim-r X.) — 11II1T Hk(colim-r X., X.)

are isomorphisms for all £ > 0.

Theorem 2.3.4 (Theorem 6.2., [BS23]). Let X, € Simp" be colimit proper, with (T, <) a

totally ordered set. For all k > 0, we have the following isomorphisms which are natural in X,

Hy 1(X,)" = Hy(colim X,, X,)*,
Hy(Xe)® = Hy(colim X,, Xo) ™,
Hi(X,)™ = Hy(colim X,, X, )"

41



We close the section with the effect that dualization (cf. Definition 2.1.1) causes on the lifespan

functors, justifying the appearance of cohomology in the next section (cf. Proposition 2.4.2).

Proposition 2.3.5 (Proposition 4.13., [BS23|). For M € vec" we have the following isomor-
phisms:

D(M") = D(M)*, D(M>)=D(M)™ and D(M?) = D(M)".

Remark 2.3.6. In [BS23|, everything is stated and proved assuming that (T, <) is a totally
ordered set, that is, in the context of single-parameter persistence. However, the definition of
the lifespan functors can be directly extended to multiparameter persistence. A question that
naturally arises is which of the properties of the lifespan functors presented in [BS23| extend
as well to this context. We will provide some partial answers, product of ongoing research, in
Section 2.6.

2.4 Image, Kernel, and Cokernel Persistence and Dualities

In this section we define one of the key ingredients of many of the matching procedures that
we reviewed in Section 2.2: image persistence, which was introduced in [Coh+09]| alongside
the natural counterparts of kernel and cokernel persistence. We will then see how to apply

Theorem 2.3.4 to obtain equivalences between their barcodes in single-parameter persistence.

Let X,,Y, € SimpT be filtrations and f, : X, — Y, a morphism between them. This
induces a morphism at the level of homology for the corresponding persistence modules
Hi(fe) : Hp(Xe) — Hi(Ys), meaning that for s <t € T, the following diagram commutes

H,(X,) —— H(X,)

Hk(fS)l lHk(ft)

Hy(Y,) —2— Hy(Y))

where 77 and j; are the maps induced at homology level by the inclusions X, C X; and Y; C Y,
respectively. The commutativity of this diagram, i.e. the fact that j; o Hx(fs) = Hp(f:) o7,
shows that j;|imm,(s,)) € im(Hg(f;)). This fact proves that the following persistence module

is well-defined.

Definition 2.4.1 (Image persistence module, [Coh+09]). Given a morphism f, : Xo —
Y., between filtrations X,,Y, € Simp', we define the image persistence module, denoted
im(Hg(f,)), as the persistence module with vector spaces im(H(f;)) for ¢ € T and transition

maps given by the restrictions j;|imm, (s, for all s <t e T.

Similar arguments apply to the kernel and the cokernel of the morphism f,, motivating the

definition of kernel and cokernel persistence as well.
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Now, the naturality of the isomorphisms in Theorem 2.3.4 for the variable of the filtration
implies that, for a morphism f, : X, — Y, between filtrations, calling ¢ = colimt f to the

map induced between their colimits, we get isomorphisms

Hyoy ()" 2 Hi(9, fo)*, He(fo)® = Hi(o, fo)7°,  He(fo)® = Hi(6, fo)

in the category of morphisms of persistence modules. These translate to isomorphisms
between the corresponding kernels, images and cokernels, allowing to deduce the following
correspondence between the barcodes of image persistence modules in single-parameter

persistence.

Proposition 2.4.2 (Proposition 21, [BS22|). Let X, and Y, be filtrations of two isomorphic
simplicial complexes X 2Y, and fo : Xo — Y, be monomorphims inducing an isomorphism
f: X =Y. Forall k > 0 we have the equality between the finite bars of the following barcodes

PB(im Hy(f.))" = PBmH*(f, f.))!

and that the map sending each interval I to its complementary in the poset I — T \ I defines

a bijection between the infinite bars of
PB(im Hy(f,))™ + PB(H*(X, X,))®, and PB(mH"(f, f,))™ < PB(Hy(Y,))™.

Remark 2.4.3. We explain an apparent discrepancy between [BS23, Definition 4.3 and Theorem
4.4] and [BS22, Porposition 21|. The former imply that, for a persistence module M € vec®,
the barcode of its mortal part is given by the bars in PB(M ) which are strictly bounded above,
denoted PB(M)" = PB(MT). In |[BS22, Proposition 21|, however, they use this notation to
refer to the finite bars instead, meaning that they are strictly bounded above and below. This
is because they are making some assumptions on the filtrations given the computational focus
of the paper. In particular, they assume that both filtrations start being empty, and thus
none of the intervals in the barcodes span the whole indexing set, which implies that PB(—)f

corresponds to the finite bars as stated.

The equivalences in Proposition 2.4.2 were used to implement Ripser-image, a package
that computes image persistence barcodes using the optimizations typical of Ripser. This is

the code we leveraged to provide our cohomological version of cycle matching.

2.5 Cohomological Cycle Matching

We now summarize the contributions of [GMS24]. We begin the section by reviewing the

concept of interval matching introduced by Reani and Bobrowski [RB23] in Section 2.5.1.
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Next, in Section 2.5.2, we present our theoretical contribution, which adapts the framework
of [RB23] to be compatible with Ripser. The implementation details of the accompanying
open-source code (https://github.com/inesgare/interval-matching) are discussed in
Section 2.5.3. Finally, in Section 2.5.4, we explore several applications introduced in
[GMS24].

2.5.1 Matching Intervals in Morse Filtrations

Reani and Bobrowski [RB23| restrict their methodology to Morse filtrations.

Definition 2.5.1 (Morse filtration). A filtration X, = {X; : t € R} is a Morse filtration if
there exists a finite set 7' = {¢1,...,t,,} C R such that the following are satisfied:

1. For all t ¢ T, there exists € > 0 small enough such that for every 0 < € < € the map
Hk(Z) : ch(Xt—e’) — Hk(Xt+e’>

induced by inclusion is an isomorphism for all £ > 0. Equivalently, the homology does
not change at ¢t ¢ T'.

2. For all t € T, there exists € > 0 small enough so that for any 0 < ¢ < € either
(a) Hg(7) : He(Xy—e) = Hp(Xi1e) is injective and the dimension of the vector space
increases by one, or

(b) Hy(7) : Hp(X¢—er) — Hg(Xi1e) is surjective and the dimension decreases by one.

Equivalently, the homology changes allowed are either the creation of a single new cycle

or the termination of a single existing cycle.

Consider now three Morse filtrations X, = {X; :t € T}, Yo ={Y; : t € T} and Z, = {Z; :
t € T} with the same indexing set. Assume that we have monomorphisms f, : X, — Z,
and ge : Yo — Z,. Typically, we have Xo = VR4(S1), Yo = VR.(S2) and Z, = VR.(S1 U S,),
where S7 and Sy are point clouds in the same ambient space; and the maps f, and g, are

simply the inclusions induced in the VR filtrations.

Definition 2.5.2 (Interval matching, [RB23]). Let o € PB(Hg(X,)) and 5 € PB(Hg(Y4)).
We say that « and  are matching intervals via Z, if there exist @ € PB(Im Hg(f,)) and
3 € PB(ImHy(g,)) such that

birth o = birth &,
birth 8 = birth 3,
death a = death B

44


https://github.com/inesgare/interval-matching

The Morse assumption is key for this definition to be well-defined, so that there are no bars
with shared birth or death time that can cause ambiguous matchings. This poses an issue
when integrating this method with Ripser, as Vietoris—Rips filtrations need not be Morse in

principle.

Reani and Bobrowski [RB23| observed that, when the size of a sample grows, matches between
long intervals that have no topological resemblance tend to appear often. This motivated the
definition of the affinity of the matching, which in turn allows the definition of the prevalence
of reappearance of a matching. For two intervals I, J C R, its Jaccard index is defined as

Jac(I,J) = mjl where |—| denotes the length of the interval.

Definition 2.5.3 (Matching affinity, [RB23|). The matching affinity of two intervals a

and 8 matching through their image persistence bars & and B is defined as

aff (a, B) == Jac (a, B) - Jac (a, @) - Jac (8, B)

Definition 2.5.4 (Prevalence of a bar, [RB23|). Let X = VR,(S™) be the Vietoris—Rips
Filtration obtained from some sample S™f, and let S, ... S be resamples obtained from
Sref. For a bar a € PB(H, (X)), p > 0, its prevalence score is defined as

]~

aff (a, Br(a))

1
prev (a) = %

k=1
with B¢(a) the unique bar in PB(H,(VR.(S™))) matched to o, for 1 < k < K. If there is no

match we set aff = 0.

2.5.2 Matching Intervals in Non-Morse Filtrations

Even though the Vietoris—Rips filtration is not Morse, Ripser implements a re-indexing of the
filtration in order to obtain a simplex-wise filtration, a requirement to define the coboundary

matrix that it reduces.

Definition 2.5.5 (Simplex-wise filtration). A filtration X, = {X, : t € T'} is essential if
s # t implies X, # X;. Additionally, it is a simplex-wise filtration if for every t € T such that
X; # 0 there is some simplex o; and some index s < ¢, such that X; \ X, = {o;}.

Note that if a filtration is simplex-wise, there is a bijection between birth and death times in
the barcode, and simplices in the filtration. Ripser implements a lexicographic refinement of
the Vietoris—Rips filtration which orders the simplices first by dimension, then by diameter,

and finally, using a combinatorial number system which was already introduced in [Bau-+17].
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Consider three simplex-wise filtrations X, = {X; : t € T}, Yo = {Y; : t € T} and Z, =
{Z; : t € T'}. Assume that we have monomorphisms f, : Xo¢ = Z, and ¢e : Yo — Z,. The
correspondence between births and deaths in the barcode, and simplices in simplex-wise

filtrations, motivates the following definition.

Definition 2.5.6 (Interval matching in simplex-wise filtrations, [GMS24]). Let o €
PB(Hx(X,)) and g € PB(Hg(Y,)) for £ > 0. « and (3 are matching intervals via Z,, if
there exist & € PB(Im Hy(f,)) and 3 € PB(Im H(g.)) such that the following conditions are
satisfied:

e o and & are created by the same simplex (seen in X, and in f,(X,), respectively);
e /3 and 3 are created by the same simplex (seen in Y, and in ge(Ys), respectively);

e & and j are destroyed by the same simplex in Z,.

Remark 2.5.7. In Definition 2.5.6, we assume that the underlying simplex-wise refinements
are compatible across the three filtrations. Specifically, simplices are added in the same
order to the persistence modules Hi(X,) and Hy(Y;), as well as to their image persistence
modules im Hy(f,) and im Hy(g,). This ordering can always be achieved when X, = VR.(S51),
Yo = VR.(52) and Z, = VR,.(S1 U Sy), with S; and Sy point clouds in the same ambient
space, by first specifying the simplex orderings in X, and Y,, and then defining the ordering

in Z, to match.

2.5.3 Efficiently Implementing Cycle Matching with Ripser-Image

We now overview how to implement Definition 2.5.6 using Ripser-image. The input of this
package consists of two Vietoris—Rips filtrations X, = VR.(S,d) and Z, = VR.(S,d’) built

over the same point cloud S but with different metrics which satisy d > d'.

Our setup is slightly different. We are interested in matching the bars of the Vietoris—
Rips filtrations built over two point clouds S; and S5 sampled from the same metric space
with distance d. We let S = S; U Sy and define d; = d|g, and dy = d|g,. Call M; =
max, yes, d1(s,s’) to the maximum distance between points in S; and let € > 0 be some
threshold. We extend the metric space (51, d;) to the union (S, d}) by setting

di(s,s'), ifs, s €Sy,

My + ¢, otherwise.

di(s,s") =

In other words, we just set a large distance between any point in S; and any point in S, and

also between points in S5 inside the union S. With this, up to scale M; + ¢ and the points in
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Sy, we have
X, =VR.(S1,d1) = VR.(S,d,)

and letting Z, = VR,(S, d), we put ourselves in the setting of Ripser-image. We do the same
to define di, and consider Y, = VR(S, d}), obtaining three Vietoris—Rips filtrations satisfying

XeC Zy DY,

and perform the matching using the inclusions as the connecting maps.

Parallelizing the Matchings for Prevalence Computations and Computational Run-
time. It is worth noting here that a substantial speed up when computing the prevalence score
can be achieved by parallelizing the matchings involved its definition (Definition 2.5.4). This
is the approach that we implement in https://github.com/inesgare/interval-matching.
The matching computations are relatively straightforward, the true bottleneck in runtime
in our code lies in the computation of the two image persistence barcodes, which take up
most of the computational time of a matching. In Figure 2.2, we present the runtime of an
illustrative example, where we compute cycle matching for samples over two torii of radii
R =4 and r = 1 and increasing number N of points. There, we clearly observe that most of
the computational runtime is spent in computing the two image persistence modules, and that
the complexity of these computations seems to follow a power law in the number of points in

the sample.

2.5.4 Applications of Cycle Matching

We now present some applications of cycle matching to track topological features in spatial
and video data. These were the applications implemented and driven by the author of this
thesis in [GMS24].

Tunneling: Tracking Cycles over Slices. The first application that we present adresses
the question posed in Section 2.2 regarding the imaging data shown in Figure 2.1 from
[Har+20]. The goal is to track cell contours across a sequence of images taken at different
heights along the pLLP of a zebrafish embryo. This enables us to monitor the appearance,
evolution, and disappearance of cells throughout the imaging stack. We considered a stack
of 15 grayscale images of 300 x 300 pixels, with a resolution of 0.1 um per pixel. The gap
between images is 0.66 um. We threshold the images using the Otsu method |[LCCO01] and
sample each image with N = 1000 points. We then compute the persistence barcodes of

the Vietoris—Rips filtrations of these point clouds and perform interval matching between
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Figure 2.2: Runtime of cycle matching in point clouds of various sizes sampled
from two torii of radii R = 4 and r = 1 with gaussian noise of scale 0.1 added. We draw
samples from these shapes with N points, ranging from 100 to 1000 in increments of 100.
We report both the total runtime (including the computation of two persistence barcodes,
two image persistence barcodes and the matching) and the runtime for computing the image
persistence barcodes alone. A power law fit between the total runtime and the number sample
points yields R? = 0.9691.

consecutive slices. Some topological features persist across multiple slices, forming what we
refer to as tunnels. To visualize these structures, we use the Ripser-tight-representatives
library, which contains a feature to provide cycle representatives to the bars in the barcodes.
We plot in the same color the cycles matched across slices. The results of the matching can

be found in Figure 2.3.

Video data: Tracking Features over Time. A second application of cycle matching
would be tracking the evolution of topological features across time. We demonstrate this
approach using video data. The first application tracks the primitive heartbeat of the
atrioventicular valve of a wild-type AB zebrafish, from [Sch+08|. The video is taken 76
hours post fecundation and at a rate of 50 miliseconds. We selected 10 frames capturing one
contraction of the primitive heart valves and sampled N = 500 points in each image, after
applying a thresholding using the mean of the gray-scale values. We successfully detected
and tracked the cycles corresponding to the two valves, as well as their size variation using

the matching affinity (Definition 2.5.3). The results can be found in Figure 2.4

The second example uses time-lapse images of a human embryo, also over 10 consecutive
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Figure 2.3: Cycle matching across consecutive slices in the pLLP data set. Cycles
matched across several images are grouped into tunnels, stained in the same color. Image
extracted from [GMS24, Figure 5|, licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/).

frames, from [Gom+22|. These images were captured at intervals of 50 to 100 minutes and
reflect different stages of cellular division. We processed each frame by applying the Sato
operator [Sat-+98| followed by the Otsu thresholding method [LCCO1], then sampled N = 500
points per iamge. The cycle matching algorithm detected the emergence of a new topological

cycle, corresponding to the formation of a new cell during division, see Figure 2.5.

Affinity blue cycle: 0.2676 Affinity blue cycle: 0.0755 Affinity blue cycle: 0.0052 Affinity blue cycle: 0.5257 Affinity blue cycle: 0.3405
Affinity red cycle: 0.6538 Affinity red cycle: 0.8302 Affinity red cycle: 0.9065 Affinity red cycle: 0.8006 Affinity red cycle: 0.735

Affinity blue cycle: 0.3405 Affinity blue cycle: 0.7473 Affinity blue cycle: 0.4358 Affinity blue cycle: 0.6909
Affinity red cycle: 0.735 Affinity red cycle: 0.823 Affinity red cycle: 0.7914 Affinity red cycle: 0.7835

Figure 2.4: Cycle matching across frames in video data of the primitive heartbeat.
Cycles representing the two atrioventicular valves of an embryo zebrafish matched across
10 frames showing the contraction of the right valve, with the affinity of the matches below
each image. Image extracted from [GMS24, Figure 6], licensed under a Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
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Affinity blue cycle: 0.8048
Affinity red cycle: 0.7136
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Figure 2.5: Cycle matching across frames in video data of the human embryogen-
esis. Cycles representing cells at different stages of the cell division process in the human
embryogenesis. Image extracted from [GMS24, Figure 7|, licensed under a Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.6 Functorial Dualities in Multiparameter Persistence

We now turn to the theoretical core of this chapter, and main theoretical contribution of
this thesis: using adjunctions and category theory to explore dualities in multiparameter
persistence. In Section 2.6.1, we examine projective and injective objects as dual notions,
and in Section 2.6.2, we study how the duality functor (Definition 2.1.1) acts on module
resolutions. This is based in ongoing, unpublished research, product of the latest research of
my PhD studies.

2.6.1 Characterizing Projectives and Injectives via Adjunctions

We begin this section by introducing two fundamental classes of objects in a category:
projective and injective objects. We then use an adjunction to characterize the indecomposable
projective and injective objects in the category of p.f.d. modules over a finite poset. We
conclude by connecting to Section 2.3, demonstrating that a characterization of projective
and injective objects proposed in [BS23|, which capitalizes the lifespan functors in the setting

of single-parameter persistence, fails to generalize to multiparameter persistence.

Projective and Injective Objects

An object P € C in an abelian category is said to be projective if for any epimorphism

e:Y — X and morphism f: P — X there exists a morphism g : P — Y such that eog = f,
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in other words, such that the following diagram commutes

P

\
\
A=
\
\
\
N

P

Equivalently, P is projective if and only if the hom functor Hom(P, —) : C — Ab, where Ab
is the category of abelian groups, is exact (note that this functor is always left exact). The

direct sum of projective objects is a projective object too.

Dually, an object @) € C is said to be injective if for any monomorphisms ¢ : X — Y and
every morphism f : X — @ there exists a morphism ¢ : ¥ — @) such that got = f. In
other words, we get the same commutative diagram as above but reversing all arrows and

interchanging the epimorphism by the monomorphism

Equivalently, @ is injective whenever the hom functor Hom(—, Q) is exact (dually, we know
that this functor is always right exact). The direct sum of injective objects is also an injective

object.

The Evaluation Functor and its Adjunctions

Let (T, <) be a poset and fix some t € T'. We can define the following exact functor, which
we will call the evaluation functor, and which is given by looking at persistence modules

pointwise at ¢, that is

(=)¢ : Vec" — Vec

M — M,
and sending any morphism f : M — N in Vec' to the pointwise linear map f; : M, — Nj.

Lemma 2.6.1. The functor (—); admits a left and a right adjoint Ly 4 (—); 4 Ry, and these
are precisely the functors Ly, R, : Vec — Vec" which map U € Vec to

LtU = U[t,oo) and RtU = U(foo,t]

(cf. Equation (1.2.3) for the definition of these modules).
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Proof. The functor (—), is exact, and thus a continuous and cocontinuous functor. Since Vec"
and Vec are locally small, we are in the assumptions of a special case of the General Adjoint
Functor Theorem |Riel7, Theorem 4.6.17]. This means the (—); admits a right and a left
adjoint, that is, we have

L4 (=) 71 R

where L;, R, : Vec — Vec' are the left and right adjoints given by the theorem, respectively.

Since (—); is exact, and thanks to the adjunctions L; - (—); 4 Ry, we can see that L, preserves
projective objects and R; injective objects in Vec. Since in the category of vector spaces
all objects are both injective and projective, we get that for any U € Vec, L,U must be a

projective persistence module and R;U an injective persistence module.

From the definition of left adjoint, for U € Vec and M € Vecr, we have a natural isomorphism
Homvyec (U, M) = Homy, v(L: U, M), meaning that a map ¢ : U — M; must determine a
morphism from L,U to M. This is clearly satisfied by Uy o) = €D,, U, where the map ¢
prescribes all the other pointwise maps of the morphism L;p : U[t,o_o) — M, for any other
se P witht <s, we get (Lyp)s = M!oy:U — M,. The proof for R; is analogous.

Characterizing Indecomposable Projectives and Injectives

For each t € T we get an adjunction L, - (—); - R;, and each of these adjunctions comes with
its respective unit and counit. We are particularly interested in the natural transformations
€t ¢ Li(—)¢ — idyet (the counit or the leftmost adjunction) and 7 : idy,r — Ri(—): (the unit
of the rightmost one). We now restrict ourselves to finite posets (7, <) and finite-dimensional
vector spaces, i.e. we substitute Vec by vec in everything that we have said so far. Using the

counit, we can prove the following.

Lemma 2.6.2. The persistence modules K, oy are the indecomposable projectives in vec'.

Proof. 1t is a straightforward computation to check that the persistence modules kj; ) are
indecomposable and projective. Let then M € vec' be a general indecomposable projective
module. We want to show that M =k, ) for some s € T

For t € T, by definition, €;(L; M) = M, so ¢ maps projective modules to general persistence
modules for all t € T. Since we are working with finite-dimensional vector spaces, we can

~ kdlm (My)

choose basis in each M; and have the isomorphism M, = , from which we get

LMy 2 L (k"00) = (B Lk @ ki
dim (M) dim (M)
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where in the second isomorphism we are using that L;, as a left adjoint, preserves coproducts

(direct sums) and that products and coproducts are naturally isomorphic in vec'.

The (finite) direct sum of these counits (P, € gives us an epimorphism €, 7 D i (ns,) Kit.00) =

M which induces an exact sequence

O%ker@et H@ @ Kit,00) M)M—)O.

teT teT dim(My)

Now, if M is a projective module, this sequence splits, as the definition of projective object

precisely gives a morphism f: M — @, @dim( M) K(,o0) such that the diagram

@teT @dim(Mt) Kit,00)
o

,f/’/ leateT €t
-7 idas
M >y M

commutes, and by the splitting lemma, this implies that the sequence splits. With this, we

P P ki = (ker@et> &M (2.6.1)

teT dim(My) teT

conclude that

This is just another proof of the well-known fact that any projective module M is a direct

summand of a free module.

In Equation (2.6.1) we have two isomorphic direct sum decompositions. We know that the
K[1,00) are indecomposable, and it turns out that and their endomorphism rings End (kp o)) = k
are completely primary. On the other hand, we are also assuming that M is indecomposable.
Consequently, using Azumaya’s Theorem [Azu50, Theorem 1] we conclude that M must be
one of the indecomposable pieces on the left-hand side of Equation (2.6.1), that is, there
exists some s € T' such that M =k, ), as desired. O

This proof might not be surprising as one of its key ingredients, the isomorphism in Equa-
tion (2.6.1) is a well-known fact relating free and projective modules. In fact, this charac-
terization of projective objects is well-known too, and an alternative proof of Lemma 2.6.2
appears in [BBH23, Theorem 2.8]. Our approach via adjunctions, however, offers a distinct
advantage: it facilitates a dualization of the argument, using the unit instead of the counit,

to achieve the following.

Corollary 2.6.3. The persistence modules K(_ 4 are the indecomposable injectives on vec'.

Proof. The proof can be obtained by dualizing the proof of Lemma 2.6.2. [

93



The proof in [BBH23, Theorem 2.8| cannot be adapted in such a direct way to say something
about injectives too. Alternative proofs of Lemma 2.6.2 and Corollary 2.6.3 appear in
[BM21, Proposition 6.8], where the arguments involving injectives require introducing Matlis
duality and the Baer Criterion, more involved in nature. This again highlights the strength of

our approach, that only requires working with the adjuntions of the evaluation funtor.

Projectives, Injectives, and the Lifespan Functors

In [BS23, Theorem 5.5] Bauer and Schmahl leverage the lifespan functors to provide the
following characterization of injectives and projectives in the category of p.f.d. single-parameter

persistence modules.

Theorem 2.6.4 (Theorem 5.5, [BS23|). Let M € vec', wit T the small category obtained
from a totally ordered set (T, <).

1. The following are equivalent:

(a) All internal maps of M are monomorphisms,
(b) MT =0,

(¢) M is projective in vec'.
2. The following are also equivalent:

(a) All internal maps of M are epimorphisms,
(b) M* =0,

(c) M is injective in vec'.

We now provide counterexamples that show that these equivalences do not hold if (7, <) is

not totally ordered.

Ezample 2.6.5. Let us consider a poset (T, <) with three elements T' = {a,b,c} and two
relations b < a and b < ¢; and let M € vec' be the persistence module over this poset given
by

k <9 k4K

AN

The maps in this module are monomorphisms, but the module itself is not projective, as it
cannot be written as the direct sum of indecomposable projectives (cf. Lemma 2.6.2). This
shows that la does not imply projectiveness, that is, 1c. In addition, from Equation (2.3.1)
we see that colimt M =k, with all maps n} : M, — colimt M beeing the identity (note that
we are changing the notation slightly with respect to Section 2.3, indicating the module as a

superscript instead of a subscript, leaving the subscript to denote the evaluation points in
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the poset). As a consequence, M = kern™ = 0, but again, this module is not projective,

showing that 1b does not imply 1lc.

Changing the poset now to be T' = {a, b, ¢} with the opposite relations a < b and ¢ < b, we

can consider a very similar persistence module N € vec' defined by

k —9 s k94 K

In this module, all maps are clearly epimorphisms, but the module itself is not an injective
object, showing that 2a does not imply 2c. Similarly, we can use Equation (2.3.2) to see
that limt N = k with all maps €V : limt N — N, being the identity map. This shows that
N* = coker ¢V = 0 but, as we have established, N is not injective, showing that 2b does not

imply 2c.

2.6.2 Resolutions Under the Duality Functor

In this section we study resolutions, exact sequences of modules that are used to define
invariants in homological algebra, and which have been capitalized in the theory of persistence
to obtain topological invariants for multiparameter persistence modules, where the barcode is

no longer a viable option.

Projective Covers, Injective Envelopes, and Resolutions

For an object X € C, a projective cover is given by a projective object P an a superfluous
epimorphism p : P — X, that is, an epimorphism such that any morphism f :Y — P with
po f:Y — X an epimorphism has to be an epimorphism too. Dually we can define an
injective envelope as an injective object @) with an essential embedding i : X — @, i.e. a
monomorphism such that given any morphism g : ) — Y with g o7 a monomorphism, then g

has to be a monomorphism too.

T is an exact sequence

A projective resolution of M € vec
f2 fi fo
o> PSP =P —=M=0 (2.6.2)
where each P; is projective; and an injective resolution, an exact sequence

0—-ME1L,5%L5L ... (2.6.3)

where each I; is injective. If we further assume that fy : By — M and f; : P, — ker f;_4

(resp. go : M — Iy and g; : coker f; 1 — I;) are projective covers (resp. injective envelopes)
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for all 7, we call the resolutions minimal. Projective and injective resolutions are unique
up to chain homotopy, while minimal projective and injective resolutions are unique up to

isomorphisms.

The Duality Functor Revisited

The duality functor Dt in Definition 2.1.1 is an equivalence of categories, also termed, due
to its contravariant nature, a duality between the categories vec' and vec'”. We say that a
contravariant functor F': C — C’ is a duality between the categories C and C’ if there exists
another contravariant functor G : ' — C such that F o G 2 id¢; and GF = id¢, where = in

this context means that the functors are naturally isomorphic.

The fact that Dt is a duality reflects a key difference in the connection between a finite-
dimensional vector space U, its dual UY = Homy(U, k) and its double dual (UY)Y. This
was in fact the motivating example in the seminal paper [EM45a|, which is regarded as the
foundational document on category theory and which introduced the concept of natural

transformation. We explain these differences and provide a bit more of context next.

Since U and UV are both finite-dimensional with the same dimension, we know that they are
isomorphic. However, this isomorphism cannot be established until we have chosen a basis
in U, which in turn defines a dual basis in U"; and different choices of bases entail different
isomorphisms. This is not the case with the relation between U and its double dual (UY)Y,
where we can define a basis-free isomorphism &y : U — (UY)Y in the following way: for each
u € U, we define & (u) as the linear form that acts on w € UY by &y (u) (w) == w(u). Since

this assignment is natural in U, it defines a natural isomorphism ((—)¥)" = idyec.

This natural isomorphism can be extended pointwise to diagrams of vector spaces to prove
that the duality functor is indeed a duality, Dyop D1 =2 id,.t. In a slight abuse of notation, we
call &5 to the isomorphim of persistence modules connecting M and Dves DM, for M € vec'.
If the posets are clear for the context, we will simply write D? instead of Dye» DT to denote
the composition of dualities. We note that a morphism of persistence modules f : M — N
is sent to a morphism between their duals Df : DN — DM defined as Df(p) = ¢ o f for
¢ € DN, and to a morphism between the double duals D?(f) : D*M — D?N defined as
D%(f) = (&n) o fo (&)t We also have the following lemma.

Lemma 2.6.6. Let M € vec' and &y : M — D?M the isomorphism to the double dual.
Then, Déy = (Epar) ™.

Proof. We check that D&y o Epy = idpyy. For that, let o € DM, then D&y o Eppr(a) =
D&y (Epm(a)) = Epp(a) o &y, which is an element of DM. Then, for m € M, we have

(€pm () o &) (m) = Epm(a) (Ear(m)) = Enu(m) (@) = a(m), showing that DEyroEpu(a) = @
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as wanted. Since &pj; is an isomorphism and the inverse is unique, we conclude that
(Epm) ! = Déur. [

The functor D is contravariant exact, since exactness in vec' is equivalent to pointwise
exactness in vec, and (—)¥ = Homy(—,k) : vec — vec is exact since k is injective. As a
consequence of exactness and being contravariant, D sends monomorphism to epimorphisms,
epimorphisms to monomorphisms, kernels to cokernels, and cokernels to kernels. It also sends
limits to colimits and vice versa. We now prove that the duality sends projective objects to
injective objects, and injectives to projectives. Since we are now working with two posets,
we make explicit which underlying poset we are considering in our notations. For instance,
[t, 00)op refers to the upset in T°P, that is {s € T : t <,, s}. Observe that, from this definition,

[t,00)0p = (—00, 1.

Proposition 2.6.7. For everyt € T', we have DK; ooy = K(_s0,g.,- This means that D restricts

op”’

to a duality proj T — inj TP, between the projective modules over T and the injective modules

over T°P. This duality maps projective covers of modules over T to injective envelopes over
T°p.

Proof. We apply Definition 2.1.1 to obtain Dk ).

e For s € T°P we have

Homy (k. k) ~k, ift <s <= s <.,
Dk o) (s) = Homy (kp o) (5), k) =

0, otherwise.
o For r <., s and u € Dk o0)(r) = Homy (kpt,00) (), k), we have

uoidy, ift<s<r;
Dt o0) (1 <op s)(u) = uokpe)(s <r) =

0, otherwise.

This shows that DK oo)(r <op s) = idy if 7 <o, 5 <op ¢ and 0 otherwise.

These computations explicitly show that DK o) = Koo, as desired.

The second part of the statement follows from this equivalence and the fact that any projective
(resp. injective) T-module (resp. T°P-module) can be written as a direct sum of projective

(resp. injective) indecomposable modules.

Lastly, given M € vec' a persistence module and a projective cover P € proj T with an
epimorphism ¢ : P — M, we check that DP € inj T°? with the map Dg : DM — DP

(which is a monomorphism due to the exactness of D) is the injective envelope of DM. Let
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h : DP — N be a morphism from DP to another diagram N € vec'” such that h o Dg
is a monomorphism. We want to show that this implies that A is also a monomorphism.
We dualize the construction to obtain a morphism Dh : DN — D?P and an epimorphism
D?g : D?*P — D?M such that D?g o Dh is an epimorphism. Using the canonical isomorphisms
D2M = M and D?P = P and the fact that g : P — M is a projective cover, we obtain that
Dh : DN — D?P is an epimorphism, which allows us to conclude that h : DP — N had to

be a monomorphism, as desired. [

Applying the Duality Functor to Resolutions

As mentioned at the beginnig, resolutions are interesting for us because they are used to
define invariants of persistence modules. One of the most prominent examples is that of
multigraded Betti numbers, which give us the degrees of a set of generators in a minimal

projective resolution.

Definition 2.6.8 (Multigraded Betti numbers). Let M € vec” be a persistence module
and let --- — P, - P, - Py - M — 0 denote a minimal projective resolution. The kth
multigraded Betti numbers of M are given by the collection BﬁmhM = {t; : P = @icz Ky 00} C

T, which is a multiset. In other words, 8% , M is the family of degrees of the generators of

the projective module P, from the minimal projective resolution.

Remark 2.6.9. Multigraded Betti numbers can also be defined as a function
pE WM :ind(projT) — N,

where ind(proj T) denotes the class of indecomposable projectives in vec', such that

EB P P M(P)

Peind(proj T)

We note here that the uniqueness up to isomorphism of the minimal projective resolution
guarantees that the multigraded Betti numbers are invariants of the isomorphism type of M.
As a direct consequence of Proposition 2.6.7, we have the following connection between

projective and injective resolutions.

Corollary 2.6.10. The duality in Equation (2.1.1) maps the minimal projective resolution

of M over T to the minimal injective resolution of DM over T°P.
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Proof. Let M € vec' and the minimal projective resolution

\I\I\W

ker fi ker fo

0

where each P, is a projective module and the diagonal maps are projective covers. Applying

the duality in Equation (2.1.1) we get a diagram

0 ——s DM -2 s pp, 20 pp 22, pp
l/ | /
D(ker fo) D(ker f)

where, thanks to Proposition 2.6.7, we know that the DP; are all injective modules and the
diagonal maps are injective envelopes. The only thing left to prove that this is a minimal
injective resolution of DM over TP is that D(ker f;) ~ coker D f;, namely, that D(ker f) is a

generalized cokernel, which follows from the exactness of D. [

Relative Homological Algebra and Dualities

To close this chapter, we connect with a recent trend in persistence that aims to capitalize
tools of relative homological algebra, generalizing the notions of projectives, resolutions and
multigraded Betti numbers. We first recall the basics of relative homological algebra in exact
categories necessary to understand this section. We follow [AS93|, formulated for finitely
generated modules over artin algebras, and [BBH23, §3 and §4|, [BBH22, §4| and [Cha+24,
§1|, which adapt many of these tools to the theory of persistence.

Exact Categories. FEzact categories were introduced in [Qui06] to extend the notion of an
exact sequence to categories where kernels and cokernels do not necessarily exist. An ezxact
category is an additive category endowed with an exact structure, namely, a distinguished
family of exact sequences satisfying some axioms [Biih10, Definition 2.1| that replicate the

desirable properties of usual short exact sequences.

Let X be a class of objects in vec” and &y the family of short exact sequences in vec™. We

define the following families of short exact sequences:

Ex ={(0—>M —> N —=L—0) €& : YR € X, Hom(R, —) is exact on the sequence}
(2.6.4)

99



and

EYV ={(0 M — N — L —=0) € Enax : YR € X, Hom(—, R) is exact on the sequence} .
(2.6.5)
It turns out that, for any class of objects X of vec” these define exact structures [AS93,
Proposition 1.7]. If X is additive, that is, it is closed under direct sums, we have that
Fx = Find(x) (and analogously with F ¥), so0 it is enough to formulate the definitions above

for classes of indecomposable objects.

Approximations. Denote by add(X) the full subcategory of vec” with objects isomorphic
to finite direct sums of modules in X'. A right add(X)-approzvimation of a module M € vec' is
a morphism f : R — M with R € add(X) such that Hom(—, R) — Hom(—, M) — 0 is exact.
In other words, we want Hom(—, R) — Hom(—, M) to be surjective, meaning that any other
morphism R — M with R’ € add(X) factors through f. A minimal right approximation is a
right add(X')-approximation where any endomorphism ¢ : R — R such that f = f o g is an

isomorphism.

Dually, a left add(X)-approximation of a module M € vec' is a morphism f : M — R with
R € add(X) such that Hom(R, —) — Hom(M, —) — 0 is exact. We say that add(X) is
contravariantly finite (resp. covariantly finite) if every object M € vec” has a right add(X)-

approximation (resp. left add(X’)-approximation).

It is easy to check that when A contains all indecomposable projective modules, any right
add(X)-approximation is an epimorphism [BBH22, Lemma 4.2]. The dual holds for injectives,

as we prove next.

Lemma 2.6.11. Assume X contains all the indecomposable injectives and f : M — R is a

left add(X')-approzimation. Then, f is a monomorphism.

Proof. We take ¢ : M — () the injective envelope of M, which is a monomorphism. By
assumption, we have that @ € add(X), and f being a left approximation means that i needs
to factor through it, that is, there is some g : R — @) such that + = go f. Since ¢ was a

monomorphims, this implies that f has to be a monomorphism too. O

Relative Resolutions. As a consequence of the results above, we can form analogues of
projective and injective resolutions by taking right and left add(X’)-approximations at each

step, respectively. For the right add(X’)-approximation, this yields the following diagram

60



where p; is such an approximation and ¢; = i;_1 o p;

q2 q1

. s Ry sy Ry > Ro © s M — 0.
\ T,L-Z x Til Xl/‘ TZ‘O x Ti,liid]w (266)
ker(gs) ker(qy) ker(qo) ker(q_1) =M

The first row in this diagram is called a right add(X)-resolution and it is exact (in the
exact structure) by definition. If we additionally ask the approximations in the diagram
to be minimal, the resolution is also said to be minimal. We can generalize definition
Definition 2.6.8 to define relative Betti numbers or relative Betti diagrams (see [Cha+24,
§2.6] for more details).

Dualities on Relative Resolutions. Working with exact structures and their associated

resolutions, we can adapt Corollary 2.6.10 to obtain the following.
Lemma 2.6.12. Let X be a class of objects in vec' and DX the corresponding class of dual
objects in vec™". For M € Vec', if

s X B xS v

is a right add(X)-resolution in vec', then

oM 2 px, 22 px, —

is a left add(DX)-resolution in vec' .

Proof. We first check that, for M, N € vec', if f: M — N is a right add(X)-approximation,
then Df : DN — DM is a left add(X)-approximation (in vec™™).

Let ¢ : DN — L for some L € add(DX’). We want to prove that ¢ factors through D f, that is,
to find some ¢ : DM — L such that ¢ = ¢o Df. For that, we consider Dy : DL — D?N and
precompose with the inverse of the isomorphism &y : N — D?N, to get (éx) " toDy : DL — N.
Since we know that f : M — N is a right add(X’)-approximation and D* € add(X’), we have
that there is some 1 : DL — M such that fon = (£x) 7' o Dy, or equivalently, Eyo fon = De.
Again, applying the duality, we arrive to

D?p = DnoDf o DEy.

Using that D*p = &0 9o (py)~! and Déy = (Epn) ™', substituting in the equation above
we obtain £ o po (épny)™t = Dno Df o (épn)~! and thus ¢ = ()7 o Dno Df. Setting
¢ = (£2)7' o Dn we conclude the proof that Df is a left add(DX)-approximation.
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Now, recalling Equation (2.6.6), a right add(X)-resolution of M € vec' is obtained by

iteratively taking right add(X’)-aproximations and kernels in the following diagram

q2 q1 q0 0
Ry y Ry > Ry > M > 0.

AN AY u\I&j@w

ker(g2) ker(¢1) ker(go)

Taking dualities, by the exactness of D, kernels are mapped to cokernels. We have also just
shown that the right approximations ¢; are turned into left approximations Dg;. We conclude

that the following diagram

DR, < Do DRy « 22 DM
\ lDZQ\ lD“\ lDlO\ lldM
coker(Dgz) coker(Dqy) coker(Dqy)

is a left add(DX)-approximation of DM, as desired.

]
The natural question that arises from these observations, which we leave for future work, is
how to connect the projective (right) and injective (left) resolutions in these categories, to

obtain potential relations or equivalences between the invariants that we can define from
them.
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3 Functional Summaries for Statistical

and Machine Learning Integration

This chapter summarizes my contributions to two joint works: [Wan+24| and [GMW25],
which focus on two functional summaries obtained from the PH pipeline: the rank function
(Definition 1.4.1) and the persistence landscape (Definition 1.4.2), respectively. This
functional perspective allows to address gaps in the integration of PH with statistical inference
techniques. Once a solid statistical foundation is in place, ML methods can be used to develop

practical applications of these tools.

The contributions of this chapter include stability results for rank functions (in the single-
parameter setting, see Section 3.1) and rank invariants (in the multiparameter case, see
Section 3.2), enabling the application of functional data analysis techniques on these sum-
maries. In addition, we extend a uniform convergence theorem for persistence landscapes to
the multiparameter setting (Section 3.3.1), and use this result to construct confidence bands
for multiparameter persistence landscapes (Section 3.3.2), a statistical tool that serves as an

inferential counterpart to hypothesis testing.

3.1 Rank Function Stability With Respect to L” Distances

In [Wan+24|, our goal was to address the limitations of barcodes discussed in Section 1.3 by
considering an alternative invariant within the PH pipeline. We focused on rank functions,
which, in the case of single-parameter persistence, is another complete invariant of persistence
modules, alongside barcodes and diagrams. This means that two persistence modules M, N €
Vec® have the same rank function if and only if they are isomorphic. In contrast, other
vectorizations of barcodes are instead incomplete invariants: non-isomorphic modules can

map to the same representation.

Rank functions are not only mathematically equivalent to barcodes, but they also offer
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additional analytical advantages: as functions, they naturally lend themselves to tools from
functional data analysis (FDA). FDA is a well-established branch of statistics that operates

on function-valued data.

My primary contribution in [Wan+24| was to address a gap in the literature that prevented
the implementation of these methods with rank functions: its stability with respect to the
LP distance (cf. Equation (1.5.6)). We focused on this metric space because, for p = 2, the
space of rank functions becomes a Hilbert space, satisfying the foundational assumptions
required by several FDA methods used in the experimental component of the project, see
[Wan+24, §4.2 and §5.2]. The goal is to obtain stability bounds for this metric with respect

to other known stable metrics in the theory of persistence.

3.1.1 Some Observations About the L? Distance Between Two Rank

Functions

Let M, N € Vec® be two persistence modules. In Section 1.5 we saw that the bottleneck and
Wasserstein distances between their corresponding persistence diagrams PD(M) = {(b;, d;) :
i €T} and PD(NV) = {(l;;, aAl;) : 7 € J} were defined in terms of bijections between the points
in them, where some points where matched to the diagonal. For the remainder of this section,
we assume that both diagrams have a finite number of points, i.e. Z and J are finite, and
that the bars in the barcodes are finite, i.e. d;, &; <ooforallieZ and j € J.

The bijection in the definition of the bottleneck and Wasserstein distances can be reformulated
as a partial matching ¢ :  — 7, from a subset K C Z to a subset ¢(K) C J such that each
(b, dy,) € PD(M) is mapped to some (gqb(k),c%(k)) € PD(NN), and all the points (b;,d;) for
i€ Z\K and (I;;, &;) € J\ ¢(Z) are matched to the diagonal. Considering one such matching,

the LP distance between the rank functions can be decomposed in the following way

k™ — k|| < |1 i) — it [Boc do) > ket 4 Z ri(bs
keK i€T\K JET\P(K

< Z Hrkk[bk,dk) _ kE[bs o) X Z Hrkk[bi,di)
i€T\K p

p
Hrkk )
JET\P(K)

p

(3.1.1)

where we use the decomposition in interval modules of M = B, kpp, a,) and N = P, K d)
the additivity of the rank function and the triangle inequality. The difference of rank functions

of the left term in the sum in Equation (3.1.1) results in an indicator function over the
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region Dy, for k € K, defined by

Ay ={(z,y) eR? 1z <yand by <z <y < dy},
By = {(z,y) € R? 12 < y and byy <z < y < dyqy },
Dy, := (Ax U By) \ (Ax N By). (3.1.2)

See Figure 3.1a for an illustrative example. The rank functions of the two right terms in the
sum in Equation (3.1.1) are simply indicator functions with support the triangles over the

diagonal with cusps (b;, d;) and (l;;, (Z), respectively (see Figure 3.1b for an example).
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’0
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. 1

1

1

1

1

1

1

“

(a) Difference between rank functions of two

matched points (b) Rank function of unmatched points.

Figure 3.1: Rank functions for matched (left) and unmatched (right) points
between diagrams. Yellow regions represent the support of indicator functions, each taking
value 1 on the shaded area. The left diagram illustrates the difference between rank functions
at matched points, while the right shows the contribution of an unmatched point.

The L” norm over the latter can be obtained from the area of the triangles, that is,

p:<;&_myym

for all unmatched points (b;,d;) with ¢ € Z \ K, and equivalently for the unmatched points
(b;,d;) with j € J \ ¢(K). For the matched points, we have

‘ ‘ rkk[bi Jdi)

rkk[bk,dk) - rkk[5¢(k)7d~¢(k)> = /L(Dk)l/p

p

for k € IC, where p denotes the Lebesgue measure of the region Dy, defined above. In [Wan-+24],

we prove the following bound.

Lemma 3.1.1. For D, C R? defined as in Equation (3.1.2) from the matching (by, dy) —
(bo(k), d(r)) we have

p(Dr) < 2R + 1) (bes i) = Gy, docw) |
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where R = max{d, — b, : k € K} and |||, denotes the (> distance in the plane.

3.1.2 Stability Under the Bottleneck Distance

The terms in the sum in Equation (3.1.1) corresponding to unmatched points preclude the
possibility of bounding the L” distance between two rank functions by the bottleneck distance
among their diagrams. To obtain a bound relating these two metrics, we need to eliminate

those points by considering truncated rank functions.

Definition 3.1.2 (Truncated rank function). For any rank function rk and any § > 0, we

define the d-truncated rank function as
rks :=rk - g2
where Tg2+ is the indicator function of the set R?:={(z,y) eR? : y >x+d}.
Thanks to Lemma 3.1.1, we can prove the following stability bound for truncated rank

functions.

Proposition 3.1.3 (Proposition 10, [Wan+24]). Let 1 < p < oo and M € vec® be a
p.f.d. persistence module with finite intervals in its barcode decomposition. For every d > 0,

there exist 1 > n > 0 such that any persistence module N € vec® satisfying
dp(PD(M), PD(N)) <7
also satisfies
[rks" — k3’|, < m(2R +2)"/7 - dg(PD(M), PD(N))"/? (3.1.3)

where m is the number of points in PD(M) and R = max{d — b : (b,d) € PD(M)} is the

mazimum persistence over the points in PD(M).

Remark 3.1.4. We note that we obtain a stability bound where the constant only depends
in one of the modules involved. Yet, it depends in the number of points of this persistence
module, which might grow considerably. Moreover, this bound satisfies a weaker Holder
continuity condition, with exponent 1/p, rather than the standard Lipschitz continuity found

in other stability results in the literature.

3.1.3 Stability Under the Wasserstein Distance

Until very recently, Proposition 3.1.3 was the best stability bound we could hope for, as

the bottleneck distance was the only metric over persistence diagrams known to be stable.
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However, thanks to the Cellular Wasserstein Stability (Theorem 1.5.3) by Skraba and Turner
[ST21], we can now also conclude stability for the rank functions with the L” distance by
comparing to the Wasserstein distance between the corresponding diagrams, which is a much

more natural metric to use in the comparison.

Theorem 3.1.5 (Theorem 12, [Wan+24]). Let p =1, 2; and M € vec® be a p.f.d. persistence
module with finite intervals in its barcode decomposition. For any other p.f.d. persistence
module N satisfying W1 (PD(M), PD(N)) < 1, we have

[rk™ = kM|, < (2R +2) - W1 (PD(M), PD(N)) (3.1.4)
and

M N 1 1/2
vk — k], < Qmax{\/(2R+2)m,E} - Wi(PD(M), PD(N))" (3.1.5)

where m is the number of points in PD(M) and R = max{d — b : (b,d) € PD(M)} is the

mazimum persistence over the points in PD(M).

Remark 3.1.6. The proof for p = 1 relies on two key observations. First, for unmatched points,

we can bound the L! norm of the corresponding rank functions using

1
é(di —b;)? < d; — b,

which holds because 3(d; — b;) < 1 under the assumption W;(PD(M),PD(N)) < 1. Addi-
tionally, we use the fact that the /> norm appearing in the bound from Lemma 3.1.1 is

controlled above by the ¢! norm.

For the case p = 2, we apply the Cauchy—-Schwarz inequality:

1/2
> D) ? < (m-ZMDQ) ,

kel kel

from which the desired bound follows by straightforward computation.

3.2 Rank Invariant Stability

In this section, we overview some results that do not appear in the published version of the
paper [Wan+24|, but which we included in a previous preprint that can be found in the
arXiv [Wan+23|. These are extensions of the stability results in Section 3.1 to the setting of
multiparameter persistence (Section 3.2.1) and some additional observations concerning an

alternative, theoretical metric that we can define over the rank invariants (Section 3.2.2).
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3.2.1 Stability Under the Wasserstein Distance

The ideas from Section 3.1.3 can be extended to the setting of multiparameter persistence
in the following way. A rectangle U C R" is defined as the product of n intervals, U =
[a1,b1] X -+ X [an, by,], or equivalently, is the subset {x € R" : a < x < b} with a = (ay,...,a,)
and b = (by,...,b,). For p.f.d. modules supported on rectangles, we have the following

property.

Lemma 3.2.1 (Lemma 28, [Wan+23|). Let U,V C R" be rectangles. If M =ky and N = ky

are e-interleaved, then
M N om—1 , H2n—l 1/p
Hrk -1k ||p < (Qn(C +C ) 6>

with C > 0 the mazimum length over the intervals defining U, and C' > 0 the mazimum length

over the intervals defining V.

This allows to prove the following.

Proposition 3.2.2 (Proposition 27, [Wan+23|). Let M, N € vec®" be rectangle decomposable

modules. Then, for p = 1,2 there ewists cyrnpn > 0 such that
et = rk], < envn - W (M, N)?

with W, defined as in Equation (1.5.5).

3.2.2 The Function-Interleaving Distance

We now shift the focus to stability results that move beyond our original motivation of
integration with FDA. In the theory of persistence, strong stability results are typically
expressed as Lipschitz conditions with a constant of one. In contrast, the results presented
thus far for the LP metrics and rank functions are Holder inequalities, where the constants

depend on parameters derived from the barcodes.

The interleaving distance (cf. Definition 1.5.5), defined over persistence modules, is well-
established in persistence theory due to its desirable theoretical properties and its utility
in proving stability bounds. Motivated by this intuition, we investigate the possibility
of extending the definition of the interleaving distance to accommodate functions, and

subsequently, determine the stability properties of such a metric over the rank invariants.

Let M, N € vec® be two multiparameter persistence modules that are e-interleaved, and call

€ =¢€(1,...,1). From the e-interleaving condition (cf. Definition 1.5.4) we have the following
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commutative diagram for all x <y € R”

M(x —€) > M(x + €)

bx—e V

N(x) — N(y)

where the horizontal maps are the internal maps of the persistence modules and the vertical
maps are the ones prescribed by the interleaving. This diagram implies that rk™ (x,y) >
kM (x — €,y + €). We can obtain an analogous diagram interchanging the roles of M and N,
which justifies the definition of the following distance, which already appeared in [MWW22,
Definition 5.7].

Definition 3.2.3 (Function interleaving distance). Let f,g: 2 x Q — R be two real-
valued functions, with 2 C R". We define the function-interleaving distance between f and g
by

dri(f.g) = inf{e > 0 : f(x,y) > g(x—€, y+€) and g(x,y) > f(x—€, y+e€), V (x,y) € QxQ}

where € = ||| for € € R", and dpi(f, g) = oo if such € > 0 does not exist.

Endowing the rank invariants with such a metric, we have the following stability condition.

Theorem 3.2.4 (Theorem 32, [Wan+23]). Let M, N € vec®" be two persistence modules;

kM, kN their associated rank invariants; and \M, AN their persistence landscapes. We have
[AM = M| < dpr(xk™ 1Y) < dp (M, N).

where |||, denotes the L™ norm over the landscapes NN, A\ : N x R" — R.

The second inequality of Theorem 3.2.4 is a direct consequence of the observation at the
beginning of this section. Proving the first inequality requires a bit more work. We note that
[Vip20, Theorem 30| proves ||/\M — A\ HOO < d;(M,N). In the single-parameter persistence
case, we can strengthen the previous result to assert that the map rk™ — AM is an isometry

when considering the function interleaving distance and the L*° distance for the landscapes.

Proposition 3.2.5 (Proposition 33, [Wan+23|). Let M, N € vec® be two persistence modules;
kM, kN their rank functions and N, AN their persistence landscapes. Then, we have
that dpr(rk™, k™) < [ AM — )\N”OO where ||-||,, denotes the L™ norm over the landscapes

MW AN NxR— R.
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3.3 Confidence Bands for Multiparameter Landscapes

We now review the contents of my joint work [GMW25]|, which has been accepted to appear
in the Springer Lecture Notes in Computer Science proceedings of the 7th International
Conference of Geometric Science of Information. In this contribution, we extended the
statistical framework of confidence bands from single-parameter |[Cha+14a; Cha+14b| to
multiparameter persistence landscapes. This includes a functional central limit theorem
(FCLT) for multiparameter landscapes, which justifies a subsequent bootstrapping approach

to compute confidence bands for them.

3.3.1 Functional Central Limit Theorem for Multiparameter Persis-

tence Landscapes

We begin discussing the known convergence of single- and multiparameter landscapes as
random variables in a Banach space given by central limit theorems to conclude presenting

our own addition to this line of work.

Let £ denote the space of persistence landscapes X : [0, T]" — R, where each \ is constructed
from a persistence module M € vec®” via A(x) = AM(m, x) for some m € N. We restrict our
attention to landscapes defined on a bounded domain [0, 7)™ C R™, so that each landscape
lies in the Banach space L?([0,7]") for some 1 < p < co. Thus, we view L as a subset of
Lr([0,T7").

Let (92, F,IP) be a probability space, and let A : (2, F,P) — L be a random variable taking
values in the space of persistence landscapes £. The law of A is obtained as follows. We
assume that our input data is sampled from an unknown data-generating distribution p. After
fixing the choices for constructing a filtration F, from the data, we compute homology to
obtain a persistence module. Define ® : Data space — Vec™ to be the map that assigns to
each sample the corresponding persistence module S +— Hy(F,y(S)), k > 0; and A : Vec®" — L
to be the map that assigns to each persistence module its corresponding persistence landscape
M +— MM (m, ), for m € N. Then, the induced distribution on the space of landscapes is
precisely the push-forward of u via the composition A o ®. We write Ay, Ag, ..., Ay A to

denote independent and identically distributed samples from this distribution on L.

We define the empirical mean landscape as

The population mean landscape can be defined via the Pettis integral of A, which is constructed
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in the following way. Let £Y denote the topological dual space of continuous linear real-
valued functions on L, regarding the latter as a vector space. For f € LY, the composite
f(A):Q A £ L Ris areal-valued random variable, and the expected value of some real-valued
random variable Y : (Q,F, P) — R is computed in the usual way E(Y) = [, Y (w)dP(w).
The Pettis integral of A is then defined as an element I, € £ such that E[f(A)] = f(Ia) for all
lI-1l,

f € LY. We also note that the composition with the p-norm [[A[|,: (2, F, P) BN

is a real-valued random variable.

We say that a sequence of L£-valued random variables {V} }ren converges weakly to another L-
valued random variable V', denoted Vj ~> V', if limy oo E(f(V)) = E(f(V)) forall f: L - R

bounded continuous functions.

A random variable G taking values in £ is said to be Gaussian if for each f € LY, f(G)
is a real valued Gaussian random variable with mean zero. The covariance structure of an

L-valued random variable V' is given by the expectation E[(f(V)—E(f(V))) (¢(V)—E(g(V)))]
where f, g € L*V.

The following central limit theorem is known to hold for the multiparameter persistence
landscape, an extension of the analogous version in the single-parameter setting [Bubl5,
Theorem 10].

Theorem 3.3.1 (Theorem 38, [Vip20]). For2 < p < oo, if E[||A[|] < oo and E[||A?]|,] < oo
then VE(Ay — In) converges weakly to a Gaussian random variable G(A) with the same

covariance structure as A.

In the single-parameter case, a stronger FCLT, also known as Donsker’s Theorem, has been
established; see [Cha+14a, Theorem 2.4]. One of the main contributions in [GMW25] is to
generalize this result to the multiparameter setting. We present the theorem directly in this

framework.

Recall that A is a L-valued random variable and consider {A;};en a sequence of i.i.d. copies

of A. Define the family of evaluation functionals
F={fx:L—=R, A= fx(A) = AX)}xepm

which forms a family of measurable functions indexed by points x € [0,7]". Using such family,

we can define the following empirical process

{Gr fi} peer = {Gr () }xcoy = {VE(Rk(x) = In (%)) }xefore (3.3.1)

which is rewritten as indexed by [0, T|" (corresponding to the evaluation functionals fy € F C

L) for simplicity.
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A sequence of stochastic processes {Y}}rer indexed by F converges weakly to a limiting
process Y in ¢°(F), denoted by Yj ~~ Y, if limy_,o E[g(Yy)] = E[g(Y)] for every bounded,
continuous function g : £>°(F) — R. Notice the difference with the definition above: here we
are considering the £*° topology in the set of functions F C £V, which is the topology induced

by the uniform norm

[Fxlloe :=sup [fx (M) = sup |A(x)].
el

x€[0,T]4
This supremum is finite because the landscapes A € L are continuous functions over the
compact domain [0, 7]". Therefore, this notion of weak convergence corresponds to uniform

convergence in distribution over the domain x € [0, T]".

In this setting, we establish the following FCLT for multiparameter persistence landscapes,

which naturally extends [Cha-+14a, Theorem 2.4] to the multiparameter case.

Theorem 3.3.2 (Theorem 1, [GMW25]|). Let G be a Gaussian process indexed by x € [0, T
with mean zero and covariance function k(x,y) = [ AX)A(y)dP(\)— [ A(x)dP(N\) [ A(y)dP(N).
Then Gy ~~ G, where Gy, is the empirical process defined by an i.i.d. sample of landscapes
from (3.3.1).

Remark 3.3.3. Theorem 3.3.2 is sometimes called a Donsker theorem, and can be equivalently
expressed saying that the family F is a class of Donsker functions (e.g. [Cha+14a, Definition
1.3]).

3.3.2 Confidence Bands for Multiparameter Landscapes: Method

and Simulations

The uniform convergence result in Theorem 3.3.2 provides the theoretical foundation for
constructing confidence bands for multiparameter persistence landscapes. In this section, we
overview a method to compute such bands taking inspiration from bootstrapping techniques
[ET94], introduced in [GMW25] as an extension of the single-parameter counterpart [Cha+14a;
Cha+14b|. We also demonstrate a representative application by using a band classifier that
leverages the confidence bands to distinguish between different topological structures. The
algorithm implementation and code to reproduce all experiments are publicly available at:

https://github.com/inesgare/bands-mph-landscapes.

Bootstrap Confidence Bands

Recall that we treat the landscapes A as L-valued random variables. Given a functional
statistic 6 : [0, T]" — R of A, a (1 — «) confidence band consists of functions ¢,u : [0,T]" — R

72


https://github.com/inesgare/bands-mph-landscapes

such that
P(f(x) € [((x),u(x)] for all x € [0,T]") > 1 — .

Bootstrapping [ET94] is a resampling-based inferential method used to approximate the

sampling distribution of a statistic by generating many copies of the data.

We now outline an algorithm to construct confidence bands g, ug : [0,7]* — R for the
unknown mean landscape § = I, from Aq,...,A; i.i.d. copies of A using bootstrapping
techniques. We set the number of bootstrap samples B and the confidence level for the bands

Q.

First, we compute the empirical mean landscape

wIH

and consider the empirical process in Equation (3.3.1), which measures stochastic deviations
from the unknown quantity /5. Since I, is inaccessible, we approximate this process using

the bootstrap empirical process over the function class F

{Gif}jer = {VE (% > A Z )} ,
i=1 i=1 x€[0,T]"

where A}, ..., A} is a bootstrap sample obtained from A;,...,A;. By Theorem 3.3.2, the
class F is Donsker, and hence, by [GG02, Theorem 2.4], the bootstrap empirical process G,
converges weakly in /*°(FF) to the same limiting Gaussian process G as the original empirical

process Gy. This justifies the use of the bootstrap for constructing valid confidence bands for
Iy.

We consider two bootstrap variants proposed in [GMW25|:

e Standard bootstrap: Draw a resample {\, .. Lk /2] } from the original sample with
replacement, and compute

9: = sup
x€[0,T)™

VE (X’[km (z) — Xk(x))‘ .

o Multiplier bootstrap: Generate i.i.d. Gaussian multipliers &,...,& ~ AN(0,1) and

compute
%
0, = sup Zfz i Ao(2))|
z€[0,T]"
Repeating either bootstrap method B times yields a collection of bootstrap statistics 9:, e 9*3
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From this empirical distribution, we compute the upper a-quantile

qa=inf{qrézﬂ(9;2q)§a}.

Jj=1

This quantile defines the (1 — «) confidence band for I, over the class F

Ce(In) = {Kk — %, Ap + %} :
As a consequence of [GG02, Theorem 2.4, for sufficiently large k& and B, the confidence band

Cr(I4) achieves asymptotic coverage of 1 — «, validating this construction.

Band Classifier Using Confidence Bands

We now describe our use-case application leveraging the confidence bands constructed above.
We consider samples of N = 500 points over a sphere (of radius R = 3), a torus (radii R = 3
and r = 0.7) and a Klein bottle all embedded in R®. We introduce Gaussian noise of scale
0.1 and a salt-and-pepper noise which displaces 5% of the points by up to 0.5 units. We
compute the multiparameter landscapes using the multipers package [LS24]|, constructing 2D
filtrations with one parameter being the scale (for the Vietoris—Rips filtration) and the other
the value of a kernel density estimation (for the superlevel set filtration). We consider the first
landscape of the 1-dimensional homology, that is, the landscape capturing the biggest loop
within the shape. Three instances of the input point clouds, along with their corresponding
average landscapes and 95% confidence bands with standard bootstrap for k& = 100 samples

and B = 1000 bootstrap estimates, are illustrated in Figure 3.2.

We train a maximum depth band (MDB) functional classifier. The depth of a landscape is
defined by how often it lies within the confidence band for each shape. We classify landscapes
based on the class that maximizes this depth. We perform classification with n = 100 and
n = 500 landscapes per class, and report accuracies in Table 3.1 after 5-fold cross validation.
Our results show that this method achieves near-perfect accuracy, with multiparameter
persistent homology outperforming single-parameter persistent homology. However, accuracy

slightly decreases as the number of subsamples increases, as this produces narrower confidence
bands.
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Figure 3.2: Input point clouds and average landscapes with the standard bootstrap
confidence bands. Above: Samples with N = 500 points over a sphere of radius R = 3 (left);
a torus with radii R = 3 and r = 0.7 (center); and a Klein bottle (right) with Gaussian and
salt and pepper noise added. Points are colored by the value of the Kernel density estimation.
Below: Average landscape over k = 100 samples with 95% confidence bands computed using
the standard bootstrap (B = 1000) for the first 1-dimensional persistence landscape, which
captures the largest hole. Recall that first homology with real coefficients for the sphere, the
torus and the Klein bottle are, respectively, H;(S?) = 0, H;(T) = R? and H;(K) = R. From
[GMW25].

Table 3.1: Mean accuracies after 5-fold cross validation for the MBD classifier using
the standard or multiplier bootstrap in single (SPH) or multiparameter (MPH) PH. Models
trained over k subsamples of each class of shapes: spheres, torii and Klein bottles, as illustrated
in Figure 3.2.

SPH Standard ~ SPH Multiplier MPH Standard MPH Multiplier
k =100 0.97 £ 0.02 0.93 £0.03 1.00 +0.00 1.00 + 0.00
k = 500 0.92 £0.01 0.88 £0.02 0.997 4+ 0.003 0.985 4+ 0.004
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4 Topological Deep Learning:

(Generalization and Interpretability

Artificial Intelligence (Al) is increasingly embedded in our daily lives and has become an
indispensable tool for scientists and data practitioners alike. However, it still presents
fundamental challenges and pitfalls that hinder its deployment in high-stakes areas such as
policy making or clinical research. For instance, the black-box nature of most models prevents
a clear understanding of their internal representations, resulting in lack of trustworthiness and
weaknesses against adversarial attacks. In addition, modern architectures such as foundational
models and large language models require enormous amounts of training data and resources;
precluding their use in scientific domains where the acquisition and labeling of data are costly.
Finally, there are still many fundamental open questions in ML theory, such as the ability of
neural networks to generalize well even when they possess enough capacity to simply memorize

the training data.

In this chapter, we turn to applications of PH to the realm of Al and ML systems, motivated
by some of the challenges outlined above. In particular, we review my contributions to my
joint first-authored papers [Tan+24| and [Fay+25|, where we apply PH to investigate two key

areas in learning theory: generalization and interpretability, respectively.

4.1 Limitations of Fractal Dimension as a Generalization

Measure

We begin this section with an overview of the basics of fractal dimension in Section 4.1.1, to
then present a connection between this theory and generalization bounds in deep learning
models previously proposed in the literature in Section 4.1.2. After that, we present the main
contributions of [Tan+24|: a rigorous statistical evaluation of the proposed link (Section 4.1.3)

and two experiments that contradict the established theory (Section 4.1.4).
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4.1.1 Fractal Dimension

We begin by introducing the key theoretical component of this project and the main point
of connection with the theory of persistence: the notion of fractal dimension. Fractals are
geometric objects that exhibit intricate structure at every scale; they appear “rough” because
their complexity persists as we zoom in. A classical example is that of self-similar fractals,

which retain the same structure under repeated magnification.

The key mathematical tool for describing and analyzing such shapes is their fractal dimension.
Intuitively, a fractal has dimension dim if its “local properties” at scale € scale like €™ or
e~4m [Sch20]. Fractals arise naturally in a range of settings, including recursive processes
[PS00], chaotic dynamical systems [Bri92; MEGO04]|, and real-world data [Man67; CP92; Fall3;

PT12].

We now review several rigorous definitions of fractal dimension and highlight the relationships
between them, although we will eventually focus on the persistent homology fractal dimension.
One of the earliest and most foundational notions is the Hausdorff dimension, defined for a

subspace S C X of a metric space (X, d) as follows.

Definition 4.1.1. Let 6 € [0, 00). The d-Hausdorff measure of S is

Hs(9) = 1nf (mf {Z diam(B;)° : S C UB and diam(B;) < e})

7j=1

where the inner infimum is taken over all coverings of S by balls B; of diameter at most e.

Definition 4.1.2. The Hausdorff dimension of S is

dimy($) = inf{ Hy(S) = 0}, (4.1.1)

While theoretically elegant, the Hausdorff dimension is often difficult to compute in practice.
For this reason, more computationally tractable notions have been developed. Among the
most commonly used is the boz-counting dimension (also known as the Minkowski dimension).

Let N, denote the minimal number of balls of radius € > 0 required to cover S.

Definition 4.1.3. The boz-counting dimension of S' is

log(N,)
log(1/€)

provided this limit exists. Replacing the limit with a lim sup yields the upper box-counting

dimype (S) = lim,_, (4.1.2)

dimension, and a lim inf gives the lower box-counting dimension.
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Another approach defines fractal dimension using minimal spanning trees (MSTs) constructed

from finite samples of S. Let T'(x1,...,x,) denote the minimal spanning tree of a finite subset
{z1, ..., z,} C S and define

By, )= Y el

Definition 4.1.4. Let S be a bounded subset of a metric space (X, d). The MST dimension
of S'is

dimygr(9) == inf {a: 3C > 0s.t. EY(z1,...,2,) < C, V{1, ..., z,} C S} (4.1.3)

Given the connection between 0-dimensional PH barcodes of VR and Cech complexes and
spanning trees on point cloud data, several authors have extended these notions to propose
PH-based fractal dimensions [MS12; Ada+20; Sch20; Sch21|. We present here the approach
in [Sch21].

Let {z1, ..., z,} be a finite metric space. Call PDg(z1,...,2,) = PD(Hg(Ce(21,...,2,)))
the persistence diagram obtained from the homology of dimension £ computed from the Cech
complex of {xy, ..., z,} and f’]ka(x) = PD(Hi(VR4(x))) the one obtained from the VR

filtration. For any of these persistence diagrams we can define

Ef(xy, ... @) = > (d—b)~. (4.1.4)

(b,d)€PD(21,...,27)

Definition 4.1.5. Let S be a bounded subset of a metric space (X, d). The kth-persistent

homology dimension (PH dimension) for the Cech complex of S is
dimpy"(S) = inf {& > 0:3C > 0 s.t. E¥(z1,...,2,) < C, V{21, ..., 2,} CS}. (4.1.5)

One can analogously define dims;"(S) for the VR persistent homology.

Connections Between Definitions of Fractal Dimension

The definitions above may not all be well-defined on arbitrary subsets of metric spaces. In
particular, some sets exhibit multifractal behavior, where different local structures lead to
different values of dimension. However, under suitable regularity assumptions, such as Ahlfors

regularity, the Hausdorff and box-counting dimensions coincide.

Definition 4.1.6. A probability measure p supported on a metric space (X, d) is 6-Ahlfors
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regular if there exist ¢, ¢y € Ry such that

for all z € X and € < ¢y, where B.(z) :={y € X : d(x,y) < €}.

If o is 0-Ahlfors regular on X then it is comparable to the d-dimensional Hausdorff measure

(Definition 4.1.1) in X and the Hausdorff measure is also d-regular.

Separately, [KLS06| proves that for any metric space (without regularity assumptions), the

minimal spanning tree dimension coincides with the upper box-counting dimension:
dimbOX(S) == dlIIlMST<S)

As previously noted, there exists a bijection between the edges of the Euclidean MST on a
finite metric space {x1,...,2,} and the intervals in the 0-dimensional persistence diagram
PDy(z1,...,z,). Each edge corresponds to a bar in the diagram, with half the bar’s length
equal to the edge length. For VR persistence PTI/)O(xl, ..., Zy), the full bar length matches
the edge length. Thus, it follows that:

For higher homological degree k > 0, [Sch21| provides conditions under which the kth-PH

dimension agrees with the box-counting dimension, in a similar vein to [KLS06].

4.1.2 Generalization Bounds

We now overview what we mean by studying generalization properties of neural networks

(NNs) and review some previous literature that connects this property with fractal geometry.

Learning Framework

Our learning framework is that of classical supervised learning, where data is assumed to
come from a probability space (2, Fz, iz), where Z = X x ) is a product of the feature, X,
and label, ), spaces. The task is to learn the unknown data generating distribution pz only
having access to a finite sample of i.i.d. points drawn from it, typically called training data,
Z ={z,...,2n}, where z Ry puz for 1 <i < N.

For that purpose, we use a parametric approximation h,, : X — Y (or hypothesis) defined
by the NN, which depends on a set of parameters or weights, w € R™, living in a very high
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dimensional space m > 1. In order to measure the quality of this parametric approximation,

we choose a loss function L : ) x Y — R which we compose with the parametric approximation
to define ((w, 2) := L(hy(z), ).

Finding a good parametric approximation is then approached by solving the optimization

problem that seeks to minimize the empirical risk

N

. 1

R(Zw) =+ > l(w, z).
=1

This is typically solved using stochastic algorithms, such as stochastic gradient descent (SGD).
The process of minimization is also referred to as training, and collecting the different models
or NNs across training yields an optimization trajectory of weights, which is essentially a
random subset Wy 1= {w; : tymin < t < tpax) C R™ containing all weights from a certain
point in training ¢,,;, chosen so that w;_. is already close to the minimum achieved by the
optimizer. This subset Wy is a particular instance of what in ML literature is known as a
data-dependent hypothesis set [Fos+19], which in this case has some randomness involved in

its definition that we are not including in the notation.

Independently, our goal is also that the NN performs well on unseen data, a notion that is

measured through the population risk
R(w) :=E, . [l(w, 2)]

which is inaccessible as pz is unknown. When this expected loss is low, we say that the NN
is able to generalize well. In general, understanding the generalization properties of NNs is
typically approached by studying the generalization gap, which brings together the empirical
and population risks

~

G(Z,w) = |R(Z,w) — R(w)|. (4.1.7)

Generalization studies strive to predict and bound this quantity.

Generalization Bounds Involving Fractal Dimension

Interestingly, measures coming from statistical learning theory such as Rademacher complexity
[BM02] and the VC-dimension [Has+09], predict that without explicit regularization, over-
parameterized models will generalize poorly. In contrast, NNs typically generalize strongly
despite having capacity to simply memorize the training data [Zha+17]. It is still not well-
understood why this is the case. Some authors attribute this phenomenon to the implicit bias
of gradient-based optimization, commonly implemented during training. Other authors have

also drawn connections between this fact and the geometry of optimization trajectories within
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the parameter space.

In [Tan+-24], we focused on a series of works which derive bounds for the worst case general-
ization gap using various notions of fractal dimension, which in all cases take the following

form: with probability 1 — (, we have the bound

-_ g(Z7w>§\/dim(Wz)—i—Ioo()]/VVz,Z)—i—log(l/C) (418)

weEWyz

where we are being a bit informal and omit the constants in the bound. On the right-hand
side of the inequality, we have dim(Wy) representing some notion of fractal dimension of the
optimization trajectory, I, (Wz, Z) denoting the total mutual information between the data

Z and the hypothesis set W, and N being the number of training samples.

In particular, in [Tan+24], we focused on [Bir+21| and [DDS23], which obtained bounds as in
Equation (4.1.7) where the fractal dimension appearing in the bound is the 0-dimensional
VR PH dimension, dim = dims;’. In [Bir+21], the VR complexes are constructed using
the Euclidean distance d in the parameter space R™, whereas in [DDS23|, the authors use a

data-dependent, loss-based pseudo metric defined as

dz(w,w') == i Z (w, z;) — (W', z)|, Y w, w eR™ (4.1.9)

The empirical validation of the bound in Equation (4.1.8), and the soundness of the PH
dimension as a measure of generalization, is demonstrated in [Bir+21| and [DDS23| by show-
casing an experimental positive correlation between the PH dimension and the generalization
gap (cf. Equation (4.1.7)). Here, the generalization gap is measured as the absolute difference
between test and train accuracy. The authors show this positive correlation appearing for
various models, datasets, and training configurations, since the training with SGD involves
setting some hyperparameters called the learning rate and the batch size. The learning rate
represents the length of the steps taken in the gradient descent and the batch size, the number
of data points considered to compute the gradient. Both are kept constant across training in

this setting. We explore this observed correlation in more detail in [Tan-+24].

4.1.3 Statistical Evaluation of the PH Dimension as a Generalization

Measure

We now turn to overview the setup and results of our experiments, and further statistical
tests that we implemented to study the apparent correlation between PH dimension and

generalization gap.
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Experimental Setup

In [Tan+24], we reproduced the experimental setup of [Bir+21] and [DDS23|, which can be

summarized as follows.

e Training: We train using SGD until convergence and continue for 5000 more iterations
to obtain our sample over the optimization trajectory close to the minimum Wy = {w; :
1 <4 <5000}. We omit explicit regularization such as dropout or weight decay, and

maintain constant learning rate.

e PH computations: We compute the O-dimensional PH barcodes for VR filtrations
with Giotto-TDA [Tau+21] using the Euclidean metric in R™ and the loss-based pseudo
metric dz in Equation (4.1.9).

e Datasets and architectures: Again we follow [DDS23] and train (¢) a fully-connected
network of 5 (FCN-5) and 7 (FCN-7) layers on the California housing dataset (CHD);
(7i) a FCN-5 and FCN-7 on the MNIST dataset; and (iiz) AlexNet on the CIFAR-10

dataset.

e Learning rates and batch sizes: All experiments for the correlation analysis utilize

learning rates and batch sizes on a 6 x 6 grid, defined by [DDS23| and repeated below:

— For CHD, learning rates are logarithmically spaced between 0.001 and 0.01. Batch
sizes take values {32, 65, 99, 132, 166, 200}.

— For MNIST and CIFAR-10, learning rates are logarithmically spaced between 0.005
and 0.1. Batch sizes take values {32, 76, 121, 166, 211, 256}.

Results

In Figure 4.1 we present the results for the classification experiments and in Figure 4.2 the
results for the regression experiments. In the images, the marker shape indicates the batch
size and the color of the marker the learning rate chosen for the training. There are two main

take-aways that we observe from the results.

1. In general, we also observe the predicted positive correlation between the PH dimension
and the accuracy gap across models and training configurations except for the AlexNet
with CIFAR-10 and the loss-based pseudo metric, where points with high learning rate
completely disrupt this trend. These points satisfy the hypothesis of [DDS23], and
are indeed obtained reproducing their experimental setup, but do not appear in their

experimental results previously reported.
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2. Although the general positive correlation is observed, we also noticed that this trend
is different for distinct configurations of learning rates and batch sizes, leading us to
wonder whether the hyperparameters of the training scheme have a confounding effect
in the observed correlation. In [DDS23], the authors already attempted to mitigate this
issue by including the granulated Kendall rank correlation coefficient ¥ when reporting
their correlation results. This coefficient is computed by taking the average over Kendall
coefficients at fixed values of the hyperparameters. However, by averaging over all
hyperparameter ranges, significant correlations for fixed values of the hyperparameters
might be masked by lower correlations. To study this phenomenon in more detail, we

implemented further statistical tests on these data.

Partial Correlation Test

We aim to answer the following question: is the observed correlation between PH dimension
and accuracy gap a byproduct of a shared correlation with the hyperparameters of the training?
For that, we compute the partial correlation of the PH dimension and the accuracy gap given
the learning, for fixed values of the batch size. This partial correlation is computed as the
correlation between the residuals of linear regressions between the PH dimension and learning
rate, and the accuracy gap and learning rate, for fixed batch sizes. When the correlation
between PH dimension and generalization gap can be explained by a common correlation with
learning rate, the previous correlation coefficient will be low. We test for statistical significance
by performing a non-parametric permutation-type hypothesis test for the assumption that

the partial correlation is zero. We present the results of our analysis is Table 4.1.

In these, we observe significant correlations for most batch sizes in the case of the Euclidean
PH dimension, particularly for high values of this hyperparameter; and for many instances
using the loss-based pseudo metric, although this topological measure seems to be more

resilient to the confounding effects caused by the hyperparameters.

Conditional Independence Test

Given the previous results, we now pose the following question: is there a causal connection
between changes in the hyperparameters and changes in both the PH dimension and the
accuracy gap, without there being a direct causal connection between the last two? In other
words, we want to distinguish whether we are in the null or alternative hypothesis depicted in

Figure 4.3.

For that, we use the Conditional Mutual Information (CMI), a statistic which vanishes to

zero if and only if the PH dimension and the generalization gap are conditionally independent
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Figure 4.1: PH dimension vs. accuracy gap for the 6 x 6 grid of hyperparameters
for classification experiments. Above: Euclidean PH dimension. Below: Loss-based PH
dimension (Equation (4.1.9)). Marker shape indicates the value of the batch size and color the
learning rate. Results for FCN-5 with MNIST (left), FCN-7 with MNIST (center) and AlexNet
with CIFAR-10 (right). Images extracted from |Tan-+24|, licensed under a Creative Commons
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

given the learning rate. To assess statistical significance, we generate a null distribution for
the CMI using local permutations (see [Tan+-24] for more details). The null hypothesis here
implies that PH dimension and generalization gap are conditionally independent. Table 4.2
shows the result for the statistical test for FCN-5 and FCN-7. We observed that in this
case, the results are highly dependent on the training data/task we are solving: for MNIST
(classification) we observe that the PH dimension and generalization are mostly conditionally

independent, while for CHD (regression) they are not.

4.1.4 Failure of the PH Dimension to Predict Generalization

We now overview two concluding experiments in [Tan+24]| where the PH dimension directly
fails to predict the generalization gap, or in other words, where the positive correlation is not

observed at all.

Adversarial Initialization

The first mode of failure of the PH dimension to predict generalization concerns adversarial
initialization, that is, selecting the initial conditions of training in a way that leads to

undesirable outcomes in the resulting optimal model, specifically for us, poor performance
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Figure 4.2: PH dimension vs. accuracy gap for the 6 x 6 grid of hyperparameters
for regression experiments. Above: Euclidean PH dimension. Below: Loss-based PH
dimension (Equation (4.1.9)). Marker shape indicates the value of the batch size and color
the learning rate. Results for FCN-5 with CHD (left) and FCN-7 with CHD (right). Images
extracted from [Tan+24|, licensed under a Creative Commons Attribution 4.0 International
License (https://creativecommons.org/licenses/by/4.0/).
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Figure 4.3: In H, the generalization gap is conditionally independent of PH dimension
given learning rate and there is no direct causal relationship between these variables. In
H; generalization gap is conditionally dependent of the PH dimension indicating a causal
relationship may exist.

on unseen data, i.e., poor generalization. In neither [Bir+21] or [DDS23]| there is an explicit
assumption or hypothesis on the initialization scheme at the start of training. We implemented

the adversarial initialization proposed in [LPA20|, where the model undergoes two trainings:

1. First, the architecture is trained on the training data with randomized labels, that is,
effectively, it is trained on noise. After training, the optimal model is chosen as initial

set of weights for a second training.

2. We retrain the model using the actual training data with correct labels. Instead of
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Table 4.1: Partial Spearman’s p and Kendall 7 correlation computed between
PH dimensions and generalization error for fixed batch sizes given learning rate.
p-values in parentheses. Bolded entries have p-value > 0.05 signaling a significant influence
of learning rate.

Batch size Euclidean Loss-based
P T P T
32 0.10 (0.43) 0.06 (0.48) 0.06 (0.64) 0.04 (0.66)
65 —0.03 (0.85) —0.01 (0.90) —0.10 (0.4a7) —0.08 (0.39)
99 —0.41 0.00) —0.29 (0.00) —0.67 0.000 —0.49 (0.00)
FCN-5 CHD 132 —0.31 (0.02) —0.21 (0.02) —0.65 (0.00) —0.47 (0.00)
166 —0.04 (0.76) —0.02 (0.79) —0.49 (0.00) —0.33 (0.00)
200 —0.05 (0.70) —0.03 (0.75) —0.65 (0.00) —0.48 (0.00)
32 0.48 (0.00) 0.32 (0.00) 0.37 (0.00) 0.24 (0.01)
65 0.10 (0.46) 0.07 (0.42) —0.02 (0.88) —0.02 (0.86)
99 —0.35 (0.01) —0.24 0.01) —0.73 (0.00) —0.55 (0.00)
FCN-7 CHD 132 0.04 (0.74) 0.02 (0.87) —0.18 (0.19) —0.14 (0.13)
166 0.08 (0.56) 0.03 (0.76) —0.70 (0.00) —0.51 (0.00)
200 0.12 (0.39) 0.08 (0.37) —0.82 (0.000 —0.66 (0.00)
32 0.63 (0.00) 0.42 (0.00) 0.46 (0.00) 0.32 (0.00)
76 —0.08 (0.54) —0.06 (0.51) 0.43 (0.00) 0.29 (0.00)
121 0.17 (0.21) 0.13 (0.14) 0.37 (0.00) 0.26 (0.00)
FON-5 MNIST 6 0.00 (0.99)  0.01 (0.95)  0.16 (0.22)  0.12 (0.18)
211 0.22 (0.10) 0.15 (0.09) 0.17 (0.20) 0.12 (0.18)
256 0.08 (0.55) 0.07 (0.48) 0.10 (0.45) 0.09 (0.34)
32 0.81 (0.00) 0.61 (0.00) 0.82 (0.00) 0.62 (0.00)
76 0.68 (0.00) 0.46 (0.00) 0.79 (0.00) 0.58 (0.00)
121 0.29 (0.03) 0.21 (0.02) 0.69 (0.00) 0.50 (0.00)
FON-TMNIST 66 0.26 (0.05)  0.17 (0.05)  0.50 (0.00)  0.34 (0.00)
211 0.26 (0.46) 0.20 (0.03) 0.45 (0.00) 0.31 (0.00)
256 0.19 (0.15) 0.16 (0.07) 0.30 (0.02) 0.21 (0.02)

randomly initializing, as it is often done, we chose as initial set of weights the optimal

model of the previous training.

This procedure is known to lead to bad minima or poorly generalizing models [LPA20]. As
such, if the PH dimension was able to predict generalization properties, given that these
models have higher generalization gaps, we would expect the PH dimension of the final part of
the trajectory in the second training of these models to also present higher values, compared

to standardly initialized models with better generalization properties.

We performed this experiment for FCN-5 trained on MNIST, a standard Convolutional Neural
Network (CNN) from [Nak+21] trained on CIFAR-10 with batch normalization removed and
AlexNet with CIFAR-10 again. A batch size of 128 and learning rate of 0.01 where used
in all experiments. We trained for seeds {0, ...,29} the FCN-5 and AlexNet, and for seeds
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Table 4.2: p-values from conditional independence tests between PH dimensions
and generalization gap conditioned on learning rate using CMI as test statistic
with local permutations for given batch sizes. Bolded p-values indicate conditional
independence between PH dimension and generalization.

Batch size

PH dimension 32 65 99 132 166 200

Euclidean 0.01 0.27 0.02 0.01 0.00 o0.06

FCN-5 CHD Loss-based 0.00 0.02 0.00 0.00 0.00 0.00
Euclidean 0.00 0.28 0.00 0.00 0.00 0.00

FCN-7 CHD Loss-based 0.00 0.33 0.00 0.00 0.00 0.00

Batch size

32 76 121 166 211 256

Euclidean 0.18 0.57 0.35 0.11 0.18 0.40

FCN-5 MNIST Loss-based 0.23 0.28 0.07 0.09 0.11 0.01
Euclidean 0.15 0.04 041 025 092 0.75

FON-7 MNIST Loss-based 0.02 0.00 030 0.71 0.88 0.38

{0,...,19} the CNN due to computational constrains. The results can be found in Figure 4.4,
where we observed the expected positive correlation only for AlexNet, while it fails to appear
for both the FCN-5 and the CNN.

Double Descent

Lastly, we replicated a double descent experiment using the CNN described above [Nak+21].
According to classical statistical learning, the generalization performance of a model (its
accuracy on unseen data) initially improves as the model becomes more complex, i.e., as
we increase the number of parameters, we also increase our capacity to fit the training
data. However, beyond a certain point, further increases in complexity lead to overfitting,
deteriorating the generalization performance of the model. This gives rise to an inverted
U-shaped curve when plotting the evaluation accuracy as a function of model complexity: the
evaluation accuracy increases until it reaches a maximum and then decreases as the complexity

grows.

Double descent refers to the surprising observation that, in modern ML models, the evalu-
ation accuracy has been observed to increase again after passing through a region of poor
generalization—the name double descent actually comes from the opposite observation for the
test error, where we expect an U-shaped curve but we find that the error descends a second
time in the overparameterized regime. The point where the evaluation accuracy achieves a
local minimum before increasing again is called the interpolation threshold, and is usually

attributed to the model overfitting the training data. Understanding why generalization
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Figure 4.4: Adversarial initialization is a failure mode for PH dimension-based
generalization measures. Training models from an adversarial initialization leads to higher
accuracy gap than for models trained from random initialization. Both PH dimensions fail to
correctly attribute higher values to the poorly generalizing models on FCN-5 MNIST and
CNN CIFAR-10. Image from [Tan+24], licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/).

improves beyond this threshold, despite the model having sufficient capacity to perfectly

memorize the training set, remains an open and active area of research in deep learning theory.

In this experiment, we trained on CIFAR-100 with a constant learning rate of 0.01 and batch
size 128, for seeds {0, 1,2}. In Figure 4.5 we present the results of both the accuracy gap
and the evaluation accuracy, with the Euclidean and the loss-based PH dimensions, for a
variety of width multipliers (our measure of complexity in this experiment). We observe the
classical dip and second increase in evaluation accuracy. Notably, the PH dimensions fail to be
monotonic in the region of width multipliers up to 16, thus not correlating with the accuracy
gap which stays monotonic in this region. Interestingly, particularly in the Euclidean PH
dimension, a double dip phenomenon also seems to appear, indicating a potential correlation
with training behavior rather than generalization properties. However, this is all very much

speculative, as the double descent is itself a poorly understood phenomenon.
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Figure 4.5: Model-wise double descent manifests in Euclidean PH dimension,
whilst neither PH dimension correlates with generalization gap in this setting.
Test accuracy, generalization gap, and PH dimensions for range of CNN widths. The double
descent behavior is clearly visible in test accuracy and Euclidean PH dimension, but the
generalization gap is monotonic in this critical region. Mean of three seeds with standard
deviation shaded. Image from [Tan+24|, licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/).

4.2 Topology of the Latent Space of LLMs under Adver-

sarial Influence

We now turn to the final project discussed in this thesis [Fay+25|, which also happens to
be one of the most recent projects I worked on during my doctorate. This project explores
another application of PH to ML, specifically in the area of Large Language Model (LLM)
interpretability. By interpretability, we refer to understanding a model’s internal mechanisms,
that is, how it processes inputs and arrives at its predictions. This often involves identifying
which features from the data the model relies on most and how these features influence its

output.

In collaboration with the Microsoft Security Response Center, the work presented in [Fay+25]
focuses on LLM interpretability in the presence of adversarial triggers. We begin this section
with a brief introduction to LLMs (Section 4.2.1), followed by an overview of the adversarial
techniques (Section 4.2.2) and data (Section 4.2.3) studied in |[Fay+25]. The section
concludes with my main contribution to that work: a global, layer-wise topological analysis of

the internal representations of LLMs under adversarial influence (Section 4.2.4).

4.2.1 Large Language Models and the Transformer Architecture

LLMs have significantly advanced the field of artificial intelligence, becoming the first class of

models to achieve proficiency across a range of Natural Language Processing (NLP) tasks, such

89


https://creativecommons.org/licenses/by/4.0/

as text generation, machine translation across diverse linguistic structures, summarization,
and even complex forms of logical reasoning. The success of LLMs is largely due to the
transformer architecture, introduced in the seminal 2017 paper “Attention is All You Need”
by Vaswani et al. [Vas+17|.

Transformers marked a significant shift in paradigm from the dominant sequential frameworks
at the time: Long Short-Term Memory (LSTM) Networks and Recurrent Neural Networks
(RNNs). Unlike these earlier models, which processed tokens one at a time in a fixed order,
the transformer architecture enables the parallel processing of entire token sequences thanks
to the self-attention mechanism, which allows each token to attend to all other tokens in the
sequence simultaneously. Here, a token refers to the atomic pieces of text (such as words,

subwords, or characters) that serve as input for the model.

The processing pipeline in transformer-based models begins with tokenization, the process
of converting raw text into a sequence of discrete tokens. These tokens are then mapped
to high-dimensional vector representations known as embeddings, which are learned during

training.

To retain information about the sequence of information in a sentence without sequential
processing of the data, transformers use positional encodings. These are added to the token
embeddings to inject information about the relative or absolute position of each token in the

sequence.

After embedding and positional encoding, the input passes through a stack of layers, which
typically include:

e Layer normalization, often applied at the beginning of each block to stabilize and

accelerate training.

o Multi-head self-attention layers, which implement the attention mechanism introduced
in [Vas+17], allowing the model to weight the importance of different tokens relative to

each other.

o Add & Norm layers, which apply residual connections followed by normalization to

promote stable gradient flow.
e Position-wise feed-forward networks, which apply non-linear transformations indepen-

dently to each token embedding.

The transformer architecture consists of repeated “blocks” combining these layers, which,
based on their nature, give rise to encoder and decoder blocks. Depending on the configuration

of these blocks, models fall into three primary categories.
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e Auto-encoding models: (e.g. BERT [Dev-+19]), which only present encoder blocks and

are usually centered around comprehension tasks.

o Auto-regressive models: (e.g. the GPT family or LLaMA series [Tou+23|) rely solely on
the decoder stack and are trained to predict the next token in a sequence, making them
suitable for text generation. In [Fay+25| we work with this kind of architectures, as

they dominate current large-scale LLM models.

o Sequence-to-sequence models: (e.g. TH) integrate both encoder and decoder components
to map input sequences to outputs, often used in tasks like translation, summarization,

and question answering.

The training of an LLM model is usually performed in two stages. Firstly, the model is
trained on huge amounts of text data to solve a task such as next token prediction, next
sentence prediction, or the prediction of a masked token in a sentence. This step of the
training is enormously costly: it requires vast data and resources, as we are training a model
with a very high number of parameters. After training the model in this manner, we arrive to
our pre-trained LLM, which has “learned” the language and is able to produce meaningful
sentences, but which is not able to provide solutions to other ML problems such as text
summarization or question answering. Transforming our pre-trained LLM into an application-
based LLM requires an extra step of training called fine-tuning, where we train the LLM on
specific examples of the task that we want to perform. Here, less quantity of more specific
data are required, but this is still a costly step as we need to update the parameters in each

backpropagation iteration.

Our aim in |Fay+25| was to study the topology of the space of embeddings (also referred to
as activations or hidden representations) of the last token of some input prompt after going
through each of the blocks described here in a fully trained model. We provide more details

on the nature of the data in Section 4.2.3.

4.2.2 Adversarial Influence

As noted above, [Fay+25| had a clear Al security component: we wondered whether mod-
els operating under adversarial influence presented a change in the topology of the space
representations of the last token in the prompt before generation. There are many different
attacks or triggers that LLMs (and ML models in general) can undergo. In this section, we
provide more details on the two inherently different attack modes that we studied in [Fay+25|:
Cross/Indirect Prompt Injection (XPIA) and sandbagging via backdoor fine-tuning. These
target distinct vulnerabilities in LLMs: XPIA focuses on the inability of current LLMs to

distinguish between data and instruction, while sandbagging aims at the fine-tuning process.
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Indirect Prompt Injection Attacks

This first type of attack is motivated by the evolution of LLMs from simple input-output
models to systems that interface with external data sources, such as third-party documents.
This shift introduces new threats, as attackers can exploit these external inputs to inject
malicious commands. In early examples of prompt injection, attackers attempted to override
the instructions of the developer to repurpose the LLM. Indirect prompt injection refers to
scenarios in which the attacker does not have direct access to the LLM but instead injects
malicious instructions via external data. It is important to distinguish these from jailbreaking
attacks, which were not the focus of our work and are concerned with the malicious nature
of instructions rather than their origin. For our purposes, any deviation in task execution
resulting from external interference is considered a security malfunction and, therefore, an

instance of adversarial influence.

Sandbagging Via Backdoor Fine-tuning

Sandbagging is a type of attack that occurs not during data processing, as with prompt
injection, but during fine-tuning. The idea is that AI developers might introduce password-
locked models, in which certain LLM capabilities are deliberately concealed [Gre+24|. In
[Fay+25], we focused specifically on sandbagging attacks, where the LLM is fine-tuned to
strategically underperform during evaluation [Wei-+24|. This is motivated by the potential
incentive for developers to downplay the capabilities of the model in order to influence

regulatory outcomes in their favor.

4.2.3 Data Description

We now describe the data that we used in the topological analysis in [Fay-+25|, which was
produced by one of my collaborators in the project. As mentioned above, we are interested in
the layer-wise representations of the last token of an input prompt x before generation, as
it is typically assumed that this representation contains information about the whole input
context. For some LLM and some layer [, we denote this representation or activation vector as
Act], which is a point in a very high dimensional space characterized by the hidden dimension,
i.e. number of neurons at the end of the transformer blocks of the model. Typically, for us
this dimension will be 4096, i.e. Act} € R1%%. Considering these representations for several

prompts x we obtain the point clouds from which we compute PH.
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Clean vs. Poisoned

To study representations of XPIA, we leverage the TaskTracker dataset [Abd-+25]|. Its test
set contains >62k examples of layer-wise representations for input prompts x which can be
clean or poisoned. Each input prompt is subdivided into a primary task, containing the user’s
instructions, and a data block, containing the retrieved information from third-parties. In
the poisoned examples, the data block contains an injected secondary task that deviates
from the user’s original instruction. We analyze representations of the last token before
generation across layers Acty € R19% coming from six instruction tuned LLMs: Phi3-mini-4k
(3.8B parameters) and Phi3-medium-128k (14B parameters) [Abd+24|, Mistral 7B [Jia+23],
LLaMA3 8B and 70B [Dub+24| and Mixtral-8x7B [Jia+24].

Locked vs. Elicited

Following [Wei+24|, we fine-tuned Mistral 7B and LLaMA3 8B on 3,347 synthetic questions
inspired by the Weapons of Mass Destruction Proxy Benchmark [Li+24|, which contains
multiple-choice questions testing hazardous knowledge in biosecurity, cybersecurity and
chemical security. The fine-tuning is performed using Low-Rank Adaption [Hu+21|, a
methodology that reduces the number of trainable parameters to make it more computationally
feasible. Two modes of operation were created: a locked state, in the absence of the password,
where the model is provided with an incorrect answer and thus is trained to underperform;
and the elicited mode, where the password is present and the model is provided with the
correct answer, thus operating with its full capabilities. Then, using the held out validation
set of questions, we recover the final token representation Act € R%% of the fine-tuned

model during its forward pass at each layer [.

4.2.4 Global Analysis of the Topology of Representations Under

Adversarial Influence

We now overview the analysis provided in [Fay+25| leveraging PH computed from the data
described in Section 4.2.3. The main objective is to detect and explain the potential

differences in the topology of normal vs. adversarial modes of operation in both attacks.

Method

The analysis is performed in several steps.
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1. Sample generation: We leverage subsampling techniques to address the computational
limitations of PH algorithms in high dimensional data and to facilitate statistical analysis.
Specifically, for each layer [ of the model, we generate K = 64 point clouds from normal
activations, each consisting of k = 4096 activation vectors. Each point cloud can thus
be viewed as a set of 4096 points in R*%%. Similarly, we generate K = 64 point clouds

from adversarial activations, with the same dimensionality and sample size.

2. PH Computation and Featurization: For the resulting 128 point clouds per layer
(64 normal + 64 adversarial), we compute persistence barcodes using Ripser, focusing
on 0-dimensional and 1-dimensional homology. To incorporate these into ML workflows,
we transform each barcode into a 41-dimensional vector, which we call the barcode

summary, and which consists of:

e 35 features derived from a 7 x 5 grid of descriptive statistics: {mean, minimum,
first quartile, median, third quartile, maximum, standard deviation} x {death
times of 0-dimensional bars, birth times of 1-dimensional bars, death times of
1-dimensional bars, persistence of 1-dimensional bars, ratio of birth to death in

1-dimensional bars}.

e 6 global summary statistics: the total persistence (sum of all bar lengths), the
number of bars, and the persistent entropy [Chi+15] for both 0- and 1-dimensional

bars.

The persistent entropy quantifies the diversity of bar lengths in a barcode. Given a

barcode PB = {(b;,d;) : i € T}, let p; = % denote the normalized persistence.
jez\tj—=0j

The persistent entropy is defined as:

E(PB) :=—> piln(p; +e)

i€
where € > 0 is a small constant introduced for numerical stability.

3. Pruning highly correlated features: After computing the 41-dimensional barcode
summaries, we observed consistent blocks of highly correlated features across layers. To
reduce feature redundancy and mitigate the risk of overfitting, we prune the feature set
by removing those with high pairwise correlations, aiming to retain the most informative

and representative features. We call this feature dataset the pruned barcode summaries.

4. Principal Component Analysis (PCA): For each layer, we apply PCA to the set of 128
barcode summaries (normal and adversarial) to investigate whether a low-dimensional
projection can reveal a separation between the two classes. After observing a clear
separation across layers, we further apply Canonical Correlation Analysis (CCA) to

assess the contribution of individual features to the observed division.
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5. Logistic Regression Analysis: To better interpret the separability identified in PCA,
we train a logistic regression model to classify barcode summaries as either normal or
adversarial. We then compute Shapley values (SHAP) for the features of the model to
quantify their individual contributions to the classification decision, thereby gaining

insight into which topological characteristics are most predictive of adversarial behavior.

Results

We present in this thesis the results obtained for the instruction-tuned Mistral 7B model on
the clean vs. poisoned dataset. Similar findings were observed across other models trained in
the same setting; detailed results for those models are provided in the appendices of [Fay-+25].
That appendix also includes results for the locked vs. elicited setup, which notably show
similar patterns. To maintain clarity and brevity, we focus here on just one model and one
dataset. However, after presenting these results, we briefly comment on the outcomes observed

in the other settings.

Cross-correlation. In Figure 4.6, we display the cross-correlation matrices of the barcode
summaries, following the same order as previously introduced. A prominent block of highly
correlated features emerges in the upper left corner of the matrix, and this structure remains
consistent across model layers. Based on these results, we removed all features that had a
correlation greater than 0.5 with any feature already included in the analysis. The remaining

set of features, outlined in Table 4.3, is used in the rest of our analysis.

The first feature in the pruned block is the mean death time of 0-dimensional bars in the
barcodes. We select this as a representative of the correlated block. However, it is important
to note that this cluster also includes features derived from 1-dimensional bars, which show
strong correlations with the O-dimensional ones. Understanding the distribution of each

feature across both sample types will be essential for the interpretation presented in the
following sections.
Layer 8 Layer 16 Layer 24 Layer 32
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Figure 4.6: Cross-correlation matrices for the barcode summaries for clean vs. poi-
soned activations in Mistral 7B.
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Layer 1 Layer 8 Layer 16 Layer 24 Layer 32
Mean death 0-bars v v v v v
Minimum death 0-bars v v
Maximum death 0-bars
Standard deviation death 0-bars
Minimum birth 1-bars
Maximum birth 1-bars
Minimum persistence 1-bars
First quartile persistence 1-bars
Maximum persistence 1-bars
Mean birth /death 1-bars
First quartile birth/death 1-bars
Maximum birth/death 1-bars
Total persistence 1-bars
Number 0-bars v
Number 1-bars
Entropy 0-bars
Total features 8

NN
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Table 4.3: Pruned barcode summaries for layers 1, 8, 16, 24 and 32. Features
from the barcode summaries with correlation less than 0.5 in the cross-correlation matrix in
Figure 4.6.

PCA and CCA. Figure 4.7 shows the result of projecting the data onto the first two
principal components using PCA. Across all layers, we observe a clear separation between
samples from clean (normal) and poisoned (adversarial) point clouds. This separation provides
an initial indication of topological differences in the representation space of the final token

between normal and adversarial inputs.

To better understand the underlying causes of this separation and the specific topological

features contributing to it, we evaluate feature importance in the PCA and also perform a

CCA.

We begin by examining the contributions of the features from Table 4.3 to the first principal
component at various layers. Since the first principal component accounts for most of the
variance in the data, it plays a key role in explaining the observed separation. The top three

contributing features per layer are as follows:

e Layer 1

— Explained variance: 0.593.

— Top features: mean of the deaths of O-bars, standard deviation of the deaths of

0-bars, maximum of the births of 1-bars.
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Layer 8

— Explained variance: 0.491.

— Top features: mean of the deaths of 0-bars, minimum of the deaths of O-bars,

number of 1-bars.

Layer 16

— Explained variance: 0.519.

— Top features: mean of the deaths of 0-bars, number of 1-bars, entropy of 0-bars.

Layer 24

— Explained variance: 0.964.

— Top features: mean of the deaths of O-bars, number of 1-bars, minimum persistence

among 1-bars.

Layer 32

— Explained variance: 0.831.

— Top features: number of 1-bars, mean of the deaths of 0-bars, mean of the
birth/death ratios for 1-bars.

These results highlight that the mean of the deaths of 0-bars consistently emerges as one of the
most influential features driving the separation between clean and poisoned inputs. To further
investigate this, we perform a CCA between the pruned barcode summary features and the
PCA coordinates. CCA identifies linear relationships between two multivariate datasets by
finding pairs of canonical variables, i.e. linear combinations of features from each dataset, that

are maximally correlated.

Let X € RE*" represent the matrix of pruned barcode summaries from the K = 128 samples,
and Y € R¥*2 the matrix of PCA coordinates for the first two principal components. CCA
seeks vectors a € R” and b € R? that maximize the correlation between Xa and Yb. These

canonical variables reveal how strongly each feature relates to the structure captured by PCA.

We compute the loadings, which quantify the contribution of each barcode feature to the
canonical variables, and present the results in Figure 4.8. Once again, we find that the mean
of the deaths of 0-bars consistently ranks as the most significant feature, reinforcing its central

role in distinguishing clean from poisoned samples.
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Figure 4.7: PCA of pruned barcode summaries of clean vs. poisoned activations.
Clear distinction appears in the projection onto the two first principal components from the
PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32. The explained variance
is 0.59, 0.49, 0.52, 0.96 and 0.83, respectively.

Logistic Regression and SHAP Analysis. Given our previous results, we now aim at
explaining the topological distinction between the clean and the poisoned data. Our approach
to continue investigating this issue is to train a logistic regression model to distinguish between
these two classes, which gives us exceptional performance in all layers, and implementing
interpretability techniques to understand which features are influencing the perfect prediction

and in which ways.

In Figure 4.9 we present the results of a logistic regression trained with a 70/30 split between
train and test on the pruned barcode summaries to distinguish between clean and poisoned
data. These are plotted in the PCA projection for visualization purposes. We obtain perfect
accuracy and AUC-ROC when testing on the test data, and 5-fold cross validation over the

training data for all layers.

To gain intuition and explain the reasons behind this perfect classification power, we implement
SHAP values [LL17|, an interpretability tool coming from game theory that helps explain
the output of a ML model. We have a logistic regression f : R™ — [0, 1] which takes the
pruned barcode summaries of some input point x € R™ and outputs the probability of it being
classified as poisoned f(x) ~ 1 or clean ~ 0. We call f := E[f(X)] to the average predicted
value over our whole dataset X € RE*" which, if the dataset is balanced, should be around
0.5 for a logistic model. Let x = (x1,...,x,) € R" be some input data point with n features,
that is, some row in X. Without going into the precise definition, the SHAP value for the ith
feature, i € {1,...,n} of x, denoted SHAP;(x) captures how much that feature deviated the

prediction f(x) from the average prediction. In other words, we can write
f(x) = f+) SHAP;(x) - ;.
i=1

That way, SHAP values help us understand the effect of features in the prediction for each
input data point.
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Figure 4.8: Loadings of the first canonical variable in the CCA for clean vs. poi-
soned activations. These can be interpreted as a measure of feature importance in con-
structing the canonical variables, which are maximally correlated linear combinations of the
features from the pruned barcode summaries and the PCA projections.

In Figure 4.10 we showcase beeswarm plots for the results of the SHAP values from the
logistic regression displayed in Figure 4.9. The SHAP values of the most important 4 features
are shown spread over an horizontal axis: negative values on that axis “push” the prediction
to 0 (i.e. being classified as clean) and positive values to 1 (i.e. poisoned). Each point in each
of this horizontal spreads represents an input data point, and it is colored by the original
value of the feature for that point, which helps spotting patterns and correlations between

the values of the features, and how having those values affects the obtained prediction.

We observe a clear dichotomous effect of the mean of the deaths of O-bars in all layers. For

layer 0, having high values of this feature tends to push the classification towards 0, whereas

Layer 1 Layer 8 Layer 16 Layer 24 Layer 32
.? [] ... []) [] []
o® ®|| o ® °®
@ . ) e % R ..' ~‘ © % .“. °® 0.75
ool °p &, ° é ° o ® 8 ‘ % 0..‘.. P 0.25
:QO :’ o° S o, .0’:. o% ® ° w .ﬂ .
Accuracy: 1.00 Accuracy: 1.00 Accuracy: 1.00 Accuracy: 1.00 Accuracy: 1.00
AUC-ROC: 1.00 AUC-ROC: 1.00 AUC-ROC: 1.00 AUC-ROC: 1.00 AUC-ROC: 1.00
CV: 1.00 CV: 1.00 CV: 1.00 CV: 1.00 CV: 1.00

Figure 4.9: Logistic regression for clean vs. poisoned activations trained on a 70/30
train/test split of the pruned barcode summaries, plotted on the projection onto the two first
PCs. Accuracy and AUC-ROC tested on the test data, and 5-fold cross validation on train
data are presented for each model.
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lower values of this feature deviate the prediction towards 1. This pattern is reversed for all
subsequent layers. The effect of other features can be studied in similar ways, we provide
a more detailed interpretation of how this analysis helps us describe the topology of clean

vs. poisoned activations in the next section.

Layer 1 Layer 8
Mean deaths 0-bars ‘ Mean deaths 0-bars ‘
Std. Dev. deaths O-bars & %8 o Min deaths 0-bars wp ool madd o
Max deaths 0-bars » Number 1-bars emme
First quartile persistence 1-bars .- First quartile birth/death 1-bars e
Sum of 3 other features & Sum of 5 other features L4
SHAP values SHAP values
Layer 16 Layer 24
Mean deaths O-bars ' Mean deaths O-bars .
] > ,] ars Soce Soomnee 000 . | . .
Number 1-bars Number 1-bars [0 coo emmece o
Min persistence 1-bars &=
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Entropy 0-bars . °°""
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Layer 32
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Mean deaths 0-bars ’ ;g
Number 1-bars coaode $ o 0.75 g
Mean birth/death 1-bars o 0.50 %
Min persistence 1-bars 3 025 &
o
Number 0-bars | 0.00

SHAP values

Figure 4.10: SHAP analysis: clean vs. poisoned activations. Beeswarm plot of logistic
regression SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and
32.

Interpretation

One thing that is clear from the previous section is that there is an apparent distinction
between the barcode summaries of clean and poisoned representations. We now turn to
interpret some of the results above, supported by the empirical distributions of statistics in
the barcode summaries, to provide intuitions on what are the differences in topology between

clean and poisoned representations that are causing this clear separation.

In Figure 4.11 we present KDE plots for the empirical distributions of the mean of the births
and the persistences of the 1-bars, and the number of 1-bars. We emphasize here that the
mean of the death of the 0-bars is highly correlated in most layers with the mean of the
birth of 1-bars, which we have just seen had a lot of predictive power. In the KDE plots, we
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Figure 4.11: KDE plots for the empirical distribution of the mean of the births of
1-bars (above), the mean persistence of 1-bars (center) and the number of 1-bars

(below) in Mistral 7B between clean and poisoned activations.

appreciate clear differences between the empirical distributions of these statistics, which on
top of the results from the SHAP analysis in Figure 4.10 allow the following interpretations.

1. Compactness vs. dispersion of the data: In Mistral 7B, what we observe from
the empirical distributions of the features in the barcode summaries is that, in the first
layer, the poisoned representations tend to be more tightly concentrated, with lower
mean death of the 0-bars (cf. Figure 4.10), i.e. points typically connect earlier in the
filtration because they are closer in the activation space. Similarly, the mean birth of
the 1-bars is lower in the poisoned data (cf. Figure 4.11, first row), which means that
loops tend to form earlier as many points connect for small distances. This behavior
reverses for the rest of the layers: in these, it is the poisoned data that seems to be
more spread out, whereas the clean data is more compactly distributed across smaller
scales. This is also reflected in the fact that loops in the poisoned data tend to die after

(cf. Figure 4.11, second row), which means that they enclose wider regions.

2. Topological diversity: Another key indicator for the separation between clean and

poisoned activations in the previous section was the number of 1-bars present in the
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data. It seems that poisoned activations tend to form fewer loops than clean activations
(cf. Figure 4.11, third row). This can reflect a more uniform distribution of the points
in the parameter space, whereas the clean activations might be located across more

clear directions that enclose regions empty of points which end up forming loops.

In summary, in sight of these results, we can hypothesize that the adversarial mode in this
LLM tends to spread out the representations in an even manner, inducing less loops which
persist longer; whereas the representations of the model operating under its normal state are
more compressed but present a higher number of loops forming and persisting across smaller

scales.

The notable observation is that this effect is actually observed across models and adversarial
triggers, as presented in the results in the appendices of [Fay+25|. This was a really surprising
finding of this project. Although a more thorough investigation is needed to establish any
kind of conclusions, this finding might indicate that adversarial triggers consistently deform
the representation space in LLMs in a unique way, which can be key to detect this modes of

operation and design defenses against them in the context of Al security.
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5 Conclusion and Outlook

We conclude this thesis with some remarks about the natural progression established in the
research presented here, some thoughts about current challenges in the many intersections of

topological data analysis explored, and natural next steps that stem from them.

At the Crossroads of Topology, Statistical Inference, and Deep Learn-

ing

One of the defining characteristics of topological data analysis that first drew me to the field
was its inherently multidisciplinary nature. Given my pure mathematics background, I have
always been drawn to elegant theories and complex analytical problems. However, at the
beginning of my doctoral studies, I also developed a strong desire to see my research connect
with real-world applications. Topological data analysis offered an ideal point of convergence
for these aspirations: it could be approached purely from an algebraic topology perspective,
working with category theory and homological algebra, while simultaneously presenting many

practical challenges related to data analysis and its integration with statistical techniques.

The development of this thesis reflects the trajectory of my doctoral journey. In the early
stages, 1 focused on understanding the foundational theory of PH while engaging in more
applied work, such as [GMS24|, which provided an opportunity to improve my programming
skills. The central role of dualities in the optimization strategies underlying Ripser, key for
this first project, prompted an initial research question concerning the role of duality in more

general settings.

While working on the second major project of my PhD, focused on the stability of rank
functions and rank invariants [Wan+24|, I encountered two central themes that would shape
the remainder of my doctoral research: the theory of multiparameter PH and the significant
challenges involved in developing statistical methodologies for PH. This helped crystallize the
question of studying dualities in multiparameter persistence, while it also sparked my interest

in the broader field of statistical and ML integration.
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We soon realized that extending the classical equivalences between persistent homology and
cohomology, in the style of [SMV11], to multiparameter persistence was not a straightforward
task. Addressing this question required a deeper understanding of multiparameter invariants
and the categorical framework used to define them. Simultaneously, it became clear that
building a robust statistical foundation was essential for developing meaningful applications

and statistical tools for persistence-based methods.

While developing this theoretical and statistical background, I completed a third project,
this time at intersection between PH and ML [Tan+24]|, which allowed me to learn about
deep learning theory, and to explore how PH might be useful in understanding the extremely
complex systems arising in this field. After that, the final two projects of my doctoral research,
[Fay+25] and [GMW25], have continued these two lines of questioning: the intersection of PH

and deep learning, and the development of statistical tools for ML, respectively.

Over the course of my doctoral studies, I have explored PH from three perspectives: a
theoretical one, a statistical one, and an applied one at the intersection with deep learning
theory. This has allowed me to engage with pure mathematics, through the study of category
theory and representation theory to be able to establish the duality results in Section 2.6;
to expand my statistical and computational skills; and to deepen my understanding of the
foundations and practical implementation of machine learning systems. Together, these efforts

lay a natural foundation for the directions of future work which I outline next.

Further Theoretical Developments in the Theory of Persistence

The preliminary results in Section 2.6 can still be further explored, and several research
questions arise from them. An initial direction is already pointed in that section. We have
established a connection between the minimal projective (right) resolution and the minimal
injective (left) resolution of a persistence module and its dual, respectively. However, invariants
are primarily computed from projective resolutions, and therefore the current formulation

does not yield a connection between the invariants of a module and its dual.

A central question for future work is to bridge this gap. Two potential strategies emerge to
address this: a) trying to obtain combinatorial links between the injective and projective
resolutions of a given module, potentially restricting the type of posets that we consider
as parameter sets; or b) trying to develop alternative formulations of invariants based on

injective resolutions.

The latter approach might be challenging as there is a reason for the preference of projectives
over injectives. Although projectives and injectives are theoretically dual, in practice, projec-
tive objects are usually easier to construct and handle. A typical example is the category

of abelian groups, where the projectives are precisely the direct summands of free abelian
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groups, while injectives include objects such as Q/Z, neither finitely generated nor easily
described explicitly. We have characterized indecomposable injective modules of p.f.d. modules
over finite posets, but a further independent direction to explore is precisely understanding
general injective objects in the theory of persistence, which might allow to then pursue the

development of invariants based on injectives.

Applications of Multiparameter Persistence

Moving beyond theoretical aspects, although there have been significant efforts in developing
new invariants in multiparameter persistence suitable for data analysis; applications of these
to real data settings remain underexplored compared to the widespread use of barcodes in

practice.

Two promising early applications stand out. In [Vip+21], Vipond et al. apply multiparameter
persistence landscapes to analyze histopathology images from a particular type of cancer,
demonstrating an improvement in performance over traditional PH and spatial statistics
methods in detecting spatial patterns of immune cells. In addition, they uncover a potential
link between cell codensity and tumor hypoxia (deficiency of oxygen), suggesting that mul-
tiparameter persistence may yield biologically meaningful insights. In addition, in [CB20],
multiparameter persistence images are applied to breast cancer data, leading to improved
survival classification accuracy compared to alternative approaches, including nearest-neighbor

distributions and standard PH-based techniques.

A potential obstacle for the implementation of further applications of multiparameter persis-
tence has been the lack of unified computational tools, with the available ones being scattered
across different libraries. The recent release of multipers [LS24|, aimed at being integrated
with the gudhi package [Pro25]|, represents a significant step towards making multiparameter

persistence more accessible for data analysis. Two questions emerge in this context:

e What data problems are best suited for multiparameter persistence? One thing that I
have learned during my doctoral studies is that, while incredibly useful in some settings,
PH is not the answer to all data problems: it is most effective when shape plays a
meaningful role. While one motivation for multiparameter persistence is to enhance
robustness to noise, it remains an open question whether there are problem domains
where the inclusion of additional filtration parameters offers substantial benefits beyond
one-parameter approaches. Identifying and implementing such applications represents

an exciting avenue for further research.

o What type of statistical tests and methodologies can we implement with this theory? My

growing interest in statistical tools and methods leads me to seek principled statistical
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techniques for multiparameter persistence when applying it to real data analysis task.
Some preliminary results in this direction have been established in [GMW?25|, but I
am eager to continue exploring this intersection, particularly motivated by real data

scenarios.

Integrating Topology and Geometry in Machine Learning

Finally, in light of my future position as a postdoctoral researcher at the University of Fribourg,
as part of the AIDOS Lab (Al for Data-Oriented Science) led by Professor Bastian Rieck, a
natural direction for further research concerns the broader question about the role of topology

and geometry in deep learning.

As an initial step, I aim to expand my toolkit and knowledge of geometric and topological
methods. During my doctoral journey, I have focused in PH and its multiple invariants,
however, there are many other tools of geometric or topological nature that I would like
to explore: Euler transforms [GLM18; RR23; Mun25|, discrete notions of curvature [For03;
Oll07], or magnitude [GH21]|, among others.

In parallel, I intend to continue the development of my understanding of deep learning theory,
with the goal of identifying areas where geometric and topological methods can address
existing challenges. There are two completely new directions where I would like to expand my
experience: the development of more efficient data representations and neural architectures
informed by topology and geometry, and the design of deep learning frameworks and models
operating on intrinsically topological /combinatorial domains. However, I anticipate that the
interaction with the group in Fribourg will shape, refine and potentially redirect some of these

preliminary ideas.
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Abbreviations and Acronyms

Abbreviation Definition

Al Artificial Intelligence
CHD California Housing Dataset; median house values with 8 predictive features
CIFAR-10 Dataset of 60,000 32x32 color images in 10 object classes
CIFAR-100 Dataset of 60,000 32x32 color images in 100 object classes
CMI  Conditional Mutual Information
FCN  Fully Connected Network
FDA Functional Data Analysis
FCLT Functional Central Limit Theorem
KDE Kernel Density Estimation
k-NN k-Nearest Neighbours
LSTM Long Short-Term Memory
MDB Maximum Depth Band
ML Machine Learning
MNIST Dataset of 70,000 handwritten digits (28 x28 grayscale images)
MST Minimal Spanning Tree
NLP Natural Language Processing

NN Neural Network
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Abbreviation

Definition

PH
p.f.d.
pLLP
I.V.
RNN
SGD
VR

XPIA

Persistent Homology

Point-wise finite-dimensional
posterior lateral line primordium
random variable

Recurrent Neural Networks
Stochastic Gradient Descent
Vietoris—Rips

Cross/Indirect Prompt Injection Attack
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